Young Measures Generated by Ideal Incompressible Fluid Flows

被引:54
作者
Szekelyhidi, Laszlo, Jr. [1 ]
Wiedemann, Emil [1 ]
机构
[1] Univ Leipzig, Math Inst, Leipzig, Germany
关键词
WEAK SOLUTIONS;
D O I
10.1007/s00205-012-0540-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In their seminal paper, DiPerna and Majda (Commun Math Phys 108(4):667-689, 1987) introduced the notion of a measure-valued solution for the incompressible Euler equations in order to capture complex phenomena present in limits of approximate solutions, such as persistence of oscillation and development of concentrations. Furthermore, they gave several explicit examples exhibiting such phenomena. In this paper we show that any measure-valued solution can be generated by a sequence of exact weak solutions. In particular this gives rise to a very large, arguably too large, set of weak solutions of the incompressible Euler equations.
引用
收藏
页码:333 / 366
页数:34
相关论文
共 26 条
[1]  
ALIBERT J. J., 1997, J. Convex Anal., V4, P129
[2]  
[Anonymous], 1969, Lectures on the Calculus of Variations and Optimal Control Theory
[3]  
[Anonymous], 1937, Comptes Rendus de la Societe des Sciences et des Lettres de Varsovie, classe III
[4]  
[Anonymous], 1996, OXFORD LECT SERIES M
[5]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[6]  
Bauer H., 2001, DEGRUYTER STUDIES MA, V26
[7]  
Brenier Y., 1989, J AM MATH SOC, V2, P225, DOI [10.2307/1990977, 10.1090/S0894-0347-1989-0969419-8]
[8]   Generalized solutions and hydrostatic approximation of the Euler equations [J].
Brenier, Yann .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) :1982-1988
[9]   Weak-Strong Uniqueness for Measure-Valued Solutions [J].
Brenier, Yann ;
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (02) :351-361
[10]  
DAFERMOS CM, 2010, GRUNDLEHREN MATH WIS, V325