Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria

被引:326
作者
Heeb, S [1 ]
Haas, D [1 ]
机构
[1] Univ Lausanne, Lab Biol Microbienne, CH-1015 Lausanne, Switzerland
关键词
quorum sensing;
D O I
10.1094/MPMI.2001.14.12.1351
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sensor kinase GacS and the response regulator GacA are members of a two-component system that is present in a wide variety of Gram-negative bacteria and has been studied mainly in enteric bacteria and fluorescent pseudomonads. The GacS/GacA system controls the production of secondary metabolites and extracellular enzymes involved in pathogenicity to plants and animals, biocontrol of soilborne plant diseases, ecological fitness, or tolerance to stress. A current model proposes that GacS senses a still-unknown signal and activates, via a phosphorelay mechanism, the GacA transcription regulator, which in turn triggers the expression of target genes. The GacS protein belongs to the unorthodox sensor kinases, characterized by an autophosphorylation, a receiver, and an output domain. The periplasmic loop domain of GacS is poorly conserved in diverse bacteria. Thus, a common signal interacting with this domain would be unexpected. Based on a comparison with the transcriptional regulator NarL, a secondary structure can be predicted for the GacA sensor kinases. Certain genes whose expression is regulated by the GacS/GacA system are regulated in parallel by the small RNA binding protein RsmA (CsrA) at a posttranscriptional level. It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.
引用
收藏
页码:1351 / 1363
页数:13
相关论文
共 118 条
[1]   A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113 [J].
Aarons, S ;
Abbas, A ;
Adams, C ;
Fenton, A ;
O'Gara, F .
JOURNAL OF BACTERIOLOGY, 2000, 182 (14) :3913-3919
[2]   Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid [J].
Ahmer, BMM ;
van Reeuwijk, J ;
Timmers, CD ;
Valentine, PJ ;
Heffron, F .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1185-1193
[3]   Salmonella SirA is a global regulator of genes mediating enteropathogenesis [J].
Ahmer, BMM ;
van Reeuwijk, J ;
Watson, PR ;
Wallis, TS ;
Heffron, F .
MOLECULAR MICROBIOLOGY, 1999, 31 (03) :971-982
[4]   Characterization of two novel regulatory genes affecting Salmonella invasion gene expression [J].
Altier, C ;
Suyemoto, M ;
Ruiz, AI ;
Burnham, KD ;
Maurer, R .
MOLECULAR MICROBIOLOGY, 2000, 35 (03) :635-646
[5]   Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA [J].
Altier, C ;
Suyemoto, M ;
Lawhon, SD .
INFECTION AND IMMUNITY, 2000, 68 (12) :6790-6797
[6]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[7]   Expression of invasin and motility are coordinately regulated in Yersinia enterocolitica [J].
Badger, JL ;
Miller, VL .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :793-800
[8]   Structure of the Escherichia coli response regulator NarL [J].
Baikalov, I ;
Schroder, I ;
KaczorGrzeskowiak, M ;
Grzeskowiak, K ;
Gunsalus, RP ;
Dickerson, RE .
BIOCHEMISTRY, 1996, 35 (34) :11053-11061
[9]   REGULATION OF TABTOXIN PRODUCTION BY THE LEMA GENE IN PSEUDOMONAS-SYRINGAE [J].
BARTA, TM ;
KINSCHERF, TG ;
WILLIS, DK .
JOURNAL OF BACTERIOLOGY, 1992, 174 (09) :3021-3029
[10]   DNA-SEQUENCE AND TRANSCRIPTIONAL ANALYSIS OF THE TBLA GENE REQUIRED FOR TABTOXIN BIOSYNTHESIS BY PSEUDOMONAS-SYRINGAE [J].
BARTA, TM ;
KINSCHERF, TG ;
UCHYTIL, TF ;
WILLIS, DK .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (02) :458-466