HiPPO and PANDA: Two Bioinformatics Tools to Support Analysis of Mass Cytometry Data

被引:0
|
作者
Pirro, Stefano [1 ,2 ]
Spada, Filomena [3 ]
Gadaleta, Emanuela [1 ]
Ferrentino, Federica [4 ]
Thorn, Graeme J. [1 ]
Cesareni, Gianni [2 ]
Chelala, Claude [1 ]
机构
[1] Queen Mary Univ London, Ctr Mol Oncol, Barts Canc Inst, Bioinformat Unit, London EC1M 6BQ, England
[2] Univ Roma Tor Vergata, Dept Biol, Rome, Italy
[3] Queen Mary Univ London, Dept Haematooncol, London, England
[4] Kings Coll London, Randall Ctr Cell & Mol Biophys, London, England
关键词
data analysis; database; mass cytometry; population profiling; SATELLITE CELLS; FIBRO/ADIPOGENIC PROGENITORS; MUSCLE; VISUALIZATION; GUIDE;
D O I
10.1089/cmb.2019.0384
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-dimensional mass cytometry (Cytometry by Time-Of-Flight; CyTOF) is a multiparametric single-cell approach that allows for more than 40 parameters to be evaluated simultaneously, opening the possibility to dissect cellular heterogeneity and elucidate functional interactions between different cell types. However, the complexity of these data makes analysis and interpretation daunting. We created High-throughput Population Profiler (HiPPO), a tool that reduces the complexity of the CyTOF data and allows homogeneous clusters of cells to be visualized in an intuitive manner. Each subpopulation is mapped to the Population Analysis Database (PANDA), an open-source, manually curated database containing protein expression profiles for selected markers of primary cells, allowing for cell type abundance in the analyzed samples to be monitored. Custom cell definitions can be submitted for targeted identifications. All cell clusters, regardless of their annotation status, are available for further analyses. HiPPO also conducts nonparametric tests to determine whether differences in protein expression levels between conditions are significant. HiPPO strikes a balance between diagnostic power and computational burden. Its minimal computational footprint allows for subpopulations in a heterogeneous sample to be identified and quantified quickly.
引用
收藏
页码:1283 / 1294
页数:12
相关论文
共 15 条
  • [1] Flow cytometry data analysis: Recent tools and algorithms
    Montante, Sebastiano
    Brinkman, Ryan R.
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2019, 41 : 56 - 62
  • [2] Cluster stability in the analysis of mass cytometry data
    Melchiotti, Rossella
    Gracio, Filipe
    Kordasti, Shahram
    Todd, Alan K.
    de Rinaldis, Emanuele
    CYTOMETRY PART A, 2017, 91A (01) : 73 - 84
  • [3] High-Dimensional Data Analysis Algorithms Yield Comparable Results for Mass Cytometry and Spectral Flow Cytometry Data
    Ferrer-Font, Laura
    Mayer, Johannes U.
    Old, Samuel
    Hermans, Ian F.
    Irish, Jonathan
    Price, Kylie M.
    CYTOMETRY PART A, 2020, 97 (08) : 824 - 831
  • [4] A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics
    Hoffmann, Nils
    Mayer, Gerhard
    Has, Canan
    Kopczynski, Dominik
    Al Machot, Fadi
    Schwudke, Dominik
    Ahrends, Robert
    Marcus, Katrin
    Eisenacher, Martin
    Turewicz, Michael
    METABOLITES, 2022, 12 (07)
  • [5] Bioinformatics tools and databases for analysis of next-generation sequence data
    Lee, Hong C.
    Lai, Kaitao
    Lorenc, Michal Tadeusz
    Imelfort, Michael
    Duran, Chris
    Edwards, David
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2012, 11 (01) : 12 - 24
  • [6] Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization
    Papoutsoglou, Georgios
    Lagani, Vincenzo
    Schmidt, Angelika
    Tsirlis, Konstantinos
    Cabrero, David-Gomez
    Tegner, Jesper
    Tsamardinos, Ioannis
    CYTOMETRY PART A, 2019, 95 (11) : 1178 - 1190
  • [7] Medical informatics: transition from data acquisition to data analysis by means of bioinformatics tools and resources
    Mahdavi, Mahmood A.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (02) : 158 - 174
  • [8] A Review on Bioinformatics Enrichment Analysis Tools Towards Functional Analysis of High Throughput Gene Set Data
    Jing, Lu Shi
    Shah, Farah Fathiah Muzaffar
    Mohamad, Mohd Saberi
    Moorthy, Kohbalan
    Deris, Safaai
    Zakaria, Zalmiyah
    Napis, Suhaimi
    CURRENT PROTEOMICS, 2015, 12 (01) : 14 - 27
  • [9] CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data
    Dai, Yuting
    Xu, Aining
    Li, Jianfeng
    Wu, Liang
    Yu, Shanhe
    Chen, Jun
    Zhao, Weili
    Sun, Xiao-Jian
    Huang, Jinyan
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data
    Yuting Dai
    Aining Xu
    Jianfeng Li
    Liang Wu
    Shanhe Yu
    Jun Chen
    Weili Zhao
    Xiao-Jian Sun
    Jinyan Huang
    BMC Bioinformatics, 22