Automatic Multi-organ Segmentation Using Learning-Based Segmentation and Level Set Optimization

被引:0
作者
Kohlberger, Timo [1 ]
Sofka, Michal [1 ]
Zhang, Jingdan [1 ]
Birkbeck, Neil [1 ]
Wetzl, Jens [1 ,2 ]
Kaftan, Jens [2 ]
Declerck, Jerome [2 ]
Zhou, S. Kevin [1 ]
机构
[1] Siemens Corp Res, Image Analyt & Informat, Princeton, NJ USA
[2] Siemens Hlthcare, Mol Imaging, Oxford, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III | 2011年 / 6893卷
关键词
SHAPE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.
引用
收藏
页码:338 / +
页数:2
相关论文
共 10 条
  • [1] [Anonymous], 2008, IEEE C COMPUTER VISI, DOI DOI 10.1109/CVPR.2008.4587393
  • [2] Active contours without edges
    Chan, TF
    Vese, LA
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) : 266 - 277
  • [3] A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape
    Cremers, Daniel
    Rousson, Mikael
    Deriche, Rachid
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 72 (02) : 195 - 215
  • [4] Kohlberger T, 2009, LECT NOTES COMPUT SC, V5762, P34, DOI 10.1007/978-3-642-04271-3_5
  • [5] Search Strategies for Multiple Landmark Detection by Submodular Maximization
    Liu, David
    Zhou, Kevin S.
    Bernhardt, Dominik
    Comaniciu, Dorin
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2831 - 2838
  • [6] Mansouri A.-R., 2005, COMPUTER VISION IMAG, V101, P137
  • [7] A variational approach for the segmentation of the left ventricle in cardiac image analysis
    Paragios, N
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 50 (03) : 345 - 362
  • [8] Rousson M, 2002, LECT NOTES COMPUT SC, V2351, P78
  • [9] Tu ZW, 2005, IEEE I CONF COMP VIS, P1589
  • [10] Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features
    Zheng, Yefeng
    Barbu, Adrian
    Georgescu, Bogdan
    Scheuering, Michael
    Comaniciu, Dorin
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (11) : 1668 - 1681