Background field removal by solving the Laplacian boundary value problem

被引:191
作者
Zhou, Dong [1 ]
Liu, Tian [2 ]
Spincemaille, Pascal [1 ]
Wang, Yi [1 ,3 ,4 ]
机构
[1] Weill Cornell Med Coll, Dept Radiol, New York, NY 10021 USA
[2] Medimagemetric LLC, New York, NY USA
[3] Cornell Univ, Dept Biomed Engn, Ithaca, NY USA
[4] Kyung Hee Univ, Seoul, South Korea
关键词
background field removal; boundary value problem of partial differential equation (PDE); Laplace's equation; Poisson's equation; full multigrid (FMG) algorithm; susceptibility weighted imaging (SWI); phase imaging; quantitative susceptibility mapping (QSM); MAGNETIC-SUSCEPTIBILITY ANISOTROPY; ENABLED DIPOLE INVERSION; HUMAN BRAIN; IN-VIVO; SPATIAL VARIATION; MAPPING QSM; PHASE; MRI; IRON; INHOMOGENEITY;
D O I
10.1002/nbm.3064
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The removal of the background magnetic field is a critical step in generating phase images and quantitative susceptibility maps, which have recently been receiving increasing attention. Although it is known that the background field satisfies Laplace's equation, the boundary values of the background field for the region of interest have not been explicitly addressed in the existing methods, and they are not directly available from MRI measurements. In this paper, we assume simple boundary conditions and remove the background field by explicitly solving the boundary value problems of Laplace's or Poisson's equation. The proposed Laplacian boundary value (LBV) method for background field removal retains data near the boundary and is computationally efficient. Tests on a numerical phantom and an experimental phantom showed that LBV was more accurate than two existing methods. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:312 / 319
页数:8
相关论文
共 45 条
[31]   Calculation of Susceptibility Through Multiple Orientation Sampling (COSMOS): A Method for Conditioning the Inverse Problem From Measured Magnetic Field Map to Susceptibility Source Image in MRI [J].
Liu, Tian ;
Spincemaille, Pascal ;
de Rochefort, Ludovic ;
Kressler, Bryan ;
Wang, Yi .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (01) :196-204
[32]   Application of a fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility [J].
Marques, JP ;
Bowtell, R .
CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2005, 25B (01) :65-78
[33]   Improved elimination of phase effects from background field inhomogeneities for susceptibility weighted imaging at high magnetic field strengths [J].
Rauscher, Alexander ;
Barth, Markus ;
Herrmann, Karl-Heinz ;
Witoszynskyj, Stephan ;
Deistung, Andreas ;
Reichenbach, Jueergen R. .
MAGNETIC RESONANCE IMAGING, 2008, 26 (08) :1145-1151
[34]   MRI Assessment of Iron Deposition in Multiple Sclerosis [J].
Ropele, Stefan ;
de Graaf, Wolter ;
Khalil, Michael ;
Wattjes, Mike P. ;
Langkammer, Christian ;
Rocca, Maria A. ;
Rovira, Alex ;
Palace, Jacqueline ;
Barkhof, Frederik ;
Filippi, Massimo ;
Fazekas, Franz .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (01) :13-21
[35]   Fast phase unwrapping algorithm for interferometric applications [J].
Schofield, MA ;
Zhu, YM .
OPTICS LETTERS, 2003, 28 (14) :1194-1196
[36]  
Schweser F, 2011, P INT SOC MAGN RESON, P2667
[37]   Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? [J].
Schweser, Ferdinand ;
Deistung, Andreas ;
Lehr, Berengar Wendel ;
Reichenbach, Juergen Rainer .
NEUROIMAGE, 2011, 54 (04) :2789-2807
[38]   Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping [J].
Schweser, Ferdinand ;
Deistung, Andreas ;
Lehr, Berengar W. ;
Reichenbach, Juergen R. .
MEDICAL PHYSICS, 2010, 37 (10) :5165-5178
[39]   Magnetic Susceptibility Mapping of Brain Tissue In Vivo Using MRI Phase Data [J].
Shmueli, Karin ;
de Zwart, Jacco A. ;
van Gelderen, Peter ;
Li, Tie-Qiang ;
Dodd, Stephen J. ;
Duyn, Jeff H. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (06) :1510-1522
[40]  
Wang Y, 2000, J MAGN RESON IMAGING, V12, P661, DOI 10.1002/1522-2586(200011)12:5<661::AID-JMRI2>3.0.CO