Application of the two-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins

被引:22
作者
Ndlovu, Partner L. [1 ]
Moitsheki, Raseelo J. [1 ]
机构
[1] Univ Witwatersrand, Ctr Differential Equat Continuum Mech & Applicat, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Two-dimensional DTM; Analytical solutions; Fins; Rectangular and convex profiles; Temperature dependent thermal properties; TEMPERATURE;
D O I
10.1016/j.cnsns.2013.02.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, approximate analytical (series) solutions for the temperature distribution in a longitudinal rectangular and convex parabolic fins with temperature dependent thermal conductivity and heat transfer coefficient are derived. The transient heat conduction problem is solved for the first time using the two-dimensional differential transform method (2D DTM). The effects of some physical parameters such as the thermo-geometric parameter, exponent and thermal conductivity gradient on temperature distribution are studied. Furthermore, we study the temperature profile at the fin tip. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2689 / 2698
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2011, INT J ENG APPL SCI
[2]   On the two-dimensional differential transform method [J].
Ayaz, F .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :361-374
[3]   Convective-Radiative Fins with Simultaneous Variation of Thermal Conductivity, Heat Transfer Coefficient, and Surface Emissivity with Temperature [J].
Aziz, A. ;
Torabi, Mohsen .
HEAT TRANSFER-ASIAN RESEARCH, 2012, 41 (02) :99-113
[4]  
Bagheri M, 2012, J MATH COMPUT SCI-JM, V5, P288
[5]  
Bhadauria R, 2011, INT J MATH TRENDS TE, V2, P26
[6]  
Chen CK, 1999, APPL MATH COMPUT, V106, P171, DOI 10.1016/S0096-3003(98)10115-7
[7]  
Chen CK, 2010, APPL MATH COMPUT, V2, P2076
[8]   Application of Differential Transform Method to Thermoelastic Problem for Annular Disks of Variable Thickness with Temperature-Dependent Parameters [J].
Chiba, Ryoichi .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2012, 33 (02) :363-380
[9]   Efficiency of differential transformation method for nonlinear oscillation: Comparison with HPM and VIM [J].
Ghafoori, S. ;
Motevalli, M. ;
Nejad, M. G. ;
Shakeri, F. ;
Ganji, D. D. ;
Jalaal, M. .
CURRENT APPLIED PHYSICS, 2011, 11 (04) :965-971
[10]   Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems [J].
Hassan, I. H. Abdel-Halim .
CHAOS SOLITONS & FRACTALS, 2008, 36 (01) :53-65