Mechanical behavior of hexagonal honeycombs under low-velocity impact - theory and simulations

被引:92
|
作者
Hu, L. L. [1 ]
Yu, T. X. [2 ]
机构
[1] Sun Yat Sen Univ, Sch Engn, Dept Appl Mech & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Honeycomb; Low-velocity impact; Crushing strength; Critical velocity; Supporting stress; COMPRESSIVE RESPONSE; PART I; INPLANE;
D O I
10.1016/j.ijsolstr.2013.05.017
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based on the cells' collapse mechanisms of the hexagonal honeycombs revealed from the numerical simulations under the low-velocity impact, an analytical model is established to deduce the crushing strength of the honeycomb and the stress at the supporting end both as functions of impact velocity, cell size, cell-wall angle, and the mechanical properties of the base material. The results show that the honeycomb's crushing strength increases with the impact velocity, while the supporting stress decreases with the increase of the impact velocity. Combining with the dynamic predictions under the high-velocity impact in our previous work (Hu and Yu, 2010), the crushing strength of the honeycombs can be analytically predicted over wide range of crushing velocities. The analytical expression of the critical velocity is also obtained, which offers the boundary for the application of the functions of the honeycomb's crushing strength under the low-velocity and the high-velocity impacts. All of the analytical predictions are in good agreement with the numerical simulation results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3152 / 3165
页数:14
相关论文
共 50 条
  • [1] Behavior of Reinforced Concrete Slabs under Low-Velocity Impact
    Xiao, Yao
    Li, Bing
    Fujikake, Kazunori
    ACI STRUCTURAL JOURNAL, 2017, 114 (03) : 643 - 658
  • [2] SIMULATIONS AND TESTS OF COMPOSITE MARINE STRUCTURES UNDER LOW-VELOCITY IMPACT
    Zhu, Zhaoyi
    Li, Xiaowen
    Chen, Qinglin
    Cai, Yingqiang
    Xiong, Yunfeng
    POLISH MARITIME RESEARCH, 2021, 28 (01) : 59 - 71
  • [3] Mechanical behavior of various nanoparticle filled composites at low-velocity impact
    Lin, Jin-Chein
    Chang, L. C.
    Nien, M. H.
    Ho, H. L.
    COMPOSITE STRUCTURES, 2006, 74 (01) : 30 - 36
  • [4] Sandwich panel behavior under low-velocity impact with polyurethane core
    Peysayyar, Reza
    Taghipoor, Hossein
    Nouri, Mohammad Damghani
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2024, 238 (07) : 1311 - 1330
  • [5] A study on nanostructured laminated plates behavior under low-velocity impact loadings
    Avila, Antonio F.
    Soares, Marcelo I.
    Neto, Almir Silva
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2007, 34 (01) : 28 - 41
  • [6] Impact Behavior Analysis of Luffa/Epoxy Composites Under Low-Velocity Loading
    Grabi, Massinissa
    Chellil, Ahmed
    Lecheb, Samir
    Grabi, Hocine
    Nour, Abdelkader
    APPLIED COMPOSITE MATERIALS, 2024,
  • [7] Numerical simulations of low-velocity impact on an aircraft sandwich panel
    Meo, M
    Morris, A
    Vignjevic, R
    Marengo, G
    COMPOSITE STRUCTURES, 2003, 62 (3-4) : 353 - 360
  • [8] Low-velocity impact behavior of fiber metal laminates
    Tsartsaris, N.
    Meo, M.
    Dolce, F.
    Polimeno, U.
    Guida, M.
    Marulo, F.
    JOURNAL OF COMPOSITE MATERIALS, 2011, 45 (07) : 803 - 814
  • [9] COMPARISON ANALYSIS OF THE BEHAVIOR OF LAMINATES UNDER STATIC INDENTATION AND LOW-VELOCITY IMPACT LOADINGS
    COLLOMBET, F
    BONINI, J
    AUZANNEAU, T
    LATAILLADE, JL
    MECANIQUE INDUSTRIELLE ET MATERIAUX, 1995, 48 (02): : 96 - 98
  • [10] Multi-scale analysis of the mechanical behaviour of a flax fibre reinforced composite under low-velocity impact
    Haggui, Mondher
    Jendli, Zouhaier
    El Mahi, Abderrahim
    Akrout, Ali
    Haddar, Mohamed
    JOURNAL OF COMPOSITE MATERIALS, 2024, 58 (02) : 217 - 234