Analysis of HDG Methods for Oseen Equations

被引:38
作者
Cesmelioglu, Aycil [1 ]
Cockburn, Bernardo [2 ]
Ngoc Cuong Nguyen [3 ]
Peraire, Jaume [3 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Oseen equations; Discontinuous Galerkin methods; Hybridizable; Postprocessing; Superconvergence; DISCONTINUOUS GALERKIN METHOD; MIXED FINITE-ELEMENTS;
D O I
10.1007/s10915-012-9639-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a hybridizable discontinuous Galerkin (HDG) method to numerically solve the Oseen equations which can be seen as the linearized version of the incompressible Navier-Stokes equations. We use same polynomial degree to approximate the velocity, its gradient and the pressure. With a special projection and postprocessing, we obtain optimal convergence for the velocity gradient and pressure and superconvergence for the velocity. Numerical results supporting our theoretical results are provided.
引用
收藏
页码:392 / 431
页数:40
相关论文
共 21 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[4]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, DOI [10. 1007/978-1-4612- 3172-1., DOI 10.1007/978-1-4612-3172-1]
[5]   Continuous interior penalty finite element method for Oseen's equations [J].
Burman, Erik ;
Fernandez, Miguel A. ;
Hansbo, Peter .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1248-1274
[6]   Performance of discontinuous Galerkin methods for elliptic PDEs [J].
Castillo, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) :524-547
[7]   Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes [J].
Chen, Yanlai ;
Cockburn, Bernardo .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) :1267-1293
[8]  
Cockburn B, 2005, MATH COMPUT, V74, P1067, DOI 10.1090/S0025-5718-04-01718-1
[9]  
Cockburn B, 2004, MATH COMPUT, V73, P569, DOI 10.1090/S0025-5718-03-01552-7
[10]  
Cockburn B., 2012, DIVERGENCE CONFORMIN