Best N term approximation spaces for tensor product wavelet bases

被引:21
|
作者
Nitsche, PA [1 ]
机构
[1] ETH, Seminar Appl Math, CH-8092 Zurich, Switzerland
关键词
best N term approximation; tensor product approximation; sparse grids; Besov spaces;
D O I
10.1007/s00365-005-0609-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider best N term approximation using anisotropic tensor product wavelet bases ("sparse grids"). We introduce a tensor product structure circle times(q) on certain quasi-Banach spaces. We prove that the approximation spaces A(q)(alpha)(L(2)) and A(q)(alpha)(H(1)) equal tensor products of Besov spaces B(q)(alpha)(L(q)), e.g., A(q)(alpha)(L(2)([0,1](d))) = B(q)(alpha)(L(q)([0,1])) circle times(q) (...) circle times(q) B(q)(alpha)(L(q)([0,1])). Solutions to elliptic partial differential equations on polygonal/polyhedral domains belong to these new scales of Besov spaces.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 38 条