Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity

被引:96
|
作者
Wang, JinRong [1 ]
Li, Xuezhu [1 ]
Feckan, Michal [2 ]
Zhou, Yong [3 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, Bratislava 84248, Slovakia
[3] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
关键词
m-convex functions; (s; m)-convex functions; Hermite-Hadamard-type inequalities; Riemann-Liouville fractional integrals; 26A33; 26A51; 26D15; (ALPHA;
D O I
10.1080/00036811.2012.727986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, two fundamental integral identities including the second-order derivatives of a given function via Riemann-Liouville fractional integrals are established. With the help of these two fractional-type integral identities, all kinds of Hermite-Hadamard-type inequalities involving left-sided and right-sided Riemann-Liouville fractional integrals for m-convex and (s,m)-convex functions, respectively. Our methods considered here may be a stimulant for further investigations concerning Hermite-Hadamard-type inequalities involving Hadamard fractional integrals.
引用
收藏
页码:2241 / 2253
页数:13
相关论文
共 50 条
  • [31] THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    MATHEMATICA SLOVACA, 2019, 69 (04) : 773 - 784
  • [32] The Hermite-Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral
    Wang, Hua
    Khan, Jamroz
    Adil Khan, Muhammad
    Khalid, Sadia
    Khan, Rewayat
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [33] Some inequalities via ψ-Riemann-Liouville fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    AIMS MATHEMATICS, 2019, 4 (05): : 1403 - 1415
  • [34] Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals
    Butt, Saad Ihsan
    Kashuri, Artion
    Umar, Muhammad
    Aslam, Adnan
    Gao, Wei
    AIMS MATHEMATICS, 2020, 5 (05): : 5193 - 5220
  • [35] Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function
    Mohammed, Pshtiwan Othman
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2314 - 2324
  • [36] RETRACTED: Hermite-Hadamard-type inequalities for ηh-convex functions via ψ-Riemann-Liouville fractional integrals (Retracted article. See vol. 2022, 2022)
    Park, Choonkil
    Chu, Yu-Ming
    Saleem, Muhammad Shoaib
    Mukhtar, Sana
    Rehman, Nasir
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [37] A New Version of the Hermite-Hadamard Inequality for Riemann-Liouville Fractional Integrals
    Mohammed, Pshtiwan Othman
    Brevik, Iver
    SYMMETRY-BASEL, 2020, 12 (04):
  • [38] Hermite-Hadamard-type inequalities for functions whose derivatives are -convex via fractional integrals
    Kwun, Young Chel
    Saleem, Muhammad Shoaib
    Ghafoor, Mamoona
    Nazeer, Waqas
    Kang, Shin Min
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [39] New Riemann-Liouville fractional Hermite-Hadamard type inequalities for harmonically convex functions
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (02) : 431 - 441
  • [40] Hermite-Hadamard-Type Inequalities for Convex Functions via the Fractional Integrals with Exponential Kernel
    Wu, Xia
    Wang, JinRong
    Zhang, Jialu
    MATHEMATICS, 2019, 7 (09)