Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity

被引:96
|
作者
Wang, JinRong [1 ]
Li, Xuezhu [1 ]
Feckan, Michal [2 ]
Zhou, Yong [3 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, Bratislava 84248, Slovakia
[3] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
关键词
m-convex functions; (s; m)-convex functions; Hermite-Hadamard-type inequalities; Riemann-Liouville fractional integrals; 26A33; 26A51; 26D15; (ALPHA;
D O I
10.1080/00036811.2012.727986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, two fundamental integral identities including the second-order derivatives of a given function via Riemann-Liouville fractional integrals are established. With the help of these two fractional-type integral identities, all kinds of Hermite-Hadamard-type inequalities involving left-sided and right-sided Riemann-Liouville fractional integrals for m-convex and (s,m)-convex functions, respectively. Our methods considered here may be a stimulant for further investigations concerning Hermite-Hadamard-type inequalities involving Hadamard fractional integrals.
引用
收藏
页码:2241 / 2253
页数:13
相关论文
共 50 条
  • [1] On Hadamard Type Fractional Inequalities for Riemann-Liouville Integrals via a Generalized Convexity
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Jung, Chahn Yong
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [2] Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals
    Sharma, Nidhi
    Singh, Sanjeev Kumar
    Mishra, Shashi Kant
    Hamdi, Abdelouahed
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [3] Hermite-Hadamard-type inequalities involving ψ-Riemann-Liouville fractional integrals via s-convex functions
    Zhao, Yong
    Sang, Haiwei
    Xiong, Weicheng
    Cui, Zhongwei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [4] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 1049 - 1059
  • [5] Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Korus, Peter
    Valdes, Juan E. Napoles
    MATHEMATICA SLOVACA, 2024, 74 (05) : 1173 - 1180
  • [6] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [7] Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals
    Wang, J.
    Deng, J.
    Feckan, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (02) : 193 - 211
  • [8] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725
  • [9] Hermite-Hadamard Type Inequalities for s-Convex Functions via Riemann-Liouville Fractional Integrals
    Wang, Shu-Hong
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 1124 - 1134
  • [10] NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR CONVEX FUNCTIONS
    Qi, Yongfang
    Li, Guoping
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)