共 41 条
Role of the growth step on the structural, optical and surface features of TiO2/SnO2 composites
被引:11
作者:
Rimoldi, Luca
[1
,2
]
Meroni, Daniela
[1
,2
]
Pargoletti, Eleonora
[1
,2
]
Biraghi, Iolanda
[1
]
Cappelletti, Giuseppe
[1
,2
]
Ardizzone, Silvia
[1
,2
]
机构:
[1] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy
[2] Consorzio Interuniv Nazl Sci & Tecnol Mat INSTM, Via Giusti 9, I-50121 Florence, Italy
关键词:
titanium dioxide;
tin oxide;
TiO2/SnO2;
composite;
hydrothermal treatment;
calcination;
SOL-GEL METHOD;
PHOTOCATALYTIC OXIDATION;
THIN-FILMS;
TIO2;
REMOVAL;
DEGRADATION;
PERFORMANCE;
ETHANOL;
FACETS;
D O I:
10.1098/rsos.181662
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
TiO2/SnO2 composites have attracted considerable attention for their application in photocatalysis, fuel cells and sensors. Structural, morphological, optical and surface features play a pivotal role in photoelectrochemical applications and are critically related to the synthetic route. Most of the reported synthetic procedures require high-temperature treatments in order to tailor the sample crystallinity, usually at the expense of surface hydroxylation and morphology. In this work, we investigate the role of a treatment in an autoclave at a low temperature (100 degrees C) on the sample properties and photocatalytic performance. With respect to samples calcined at 400 degrees C, the milder crystallization treatment promotes anatase phase, mesoporosity and water chemi/physisorption, while reducing the incorporation of heteroatoms within the TiO2 lattice. The role of Sn content was also investigated, showing a marked influence, especially on the structural properties. Notably, at a high content, Sn favours the formation of rutile TiO2 at very low reaction temperatures (100 degrees C), thanks to the structural compatibility with cassiterite SnO2. Selected samples were tested towards the photocatalytic degradation of tetracycline in water under UV light. Overall, the low-temperature treatment enables to tune the TiO2 phase composition while maintaining its surface hydrophilicity and gives rise to well-dispersed SnO2 at the TiO2 surface.
引用
收藏
页数:9
相关论文