Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:133
|
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 50 条
  • [41] Improved Deep Mixture Density Network for Regional Wind Power Probabilistic Forecasting
    Zhang, Hao
    Liu, Yongqian
    Yan, Jie
    Han, Shuang
    Li, Li
    Long, Quan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (04) : 2549 - 2560
  • [42] Short-Term Power Forecasting and Uncertainty Analysis of Wind Farm at Multiple Time Scales
    Zhang, Tianren
    Huang, Yuping
    Liao, Hui
    Gong, Xianfu
    Peng, Bo
    IEEE ACCESS, 2024, 12 : 25129 - 25145
  • [43] Wind speed and wind power forecasting models
    Lydia, M.
    Kumar, G. Edwin Prem
    Akash, R.
    ENERGY & ENVIRONMENT, 2024,
  • [44] Wind power forecasting based on time series and machine learning models
    Park, Sujin
    Lee, Jin-Young
    Kim, Sahm
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (05) : 723 - 734
  • [45] Elman neural network considering dynamic time delay estimation for short-term forecasting of offshore wind power
    Huang, Jing
    Qin, Rui
    APPLIED ENERGY, 2024, 358
  • [46] A Wind Power Forecasting Model Incorporating Recursive Bayesian Filtering State Estimation and Time-Series Data Mining
    Liu, Peng
    Zhang, Tieyan
    Tian, Furui
    Teng, Yun
    Gu, Chuang
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (05): : 1485 - 1493
  • [47] Skill forecasting from ensemble predictions of wind power
    Pinson, P.
    Nielsen, H. Aa.
    Madsen, H.
    Kariniotakis, G.
    APPLIED ENERGY, 2009, 86 (7-8) : 1326 - 1334
  • [48] Recent developments in multivariate wind and solar power forecasting
    Sorensen, Mikkel L.
    Nystrup, Peter
    Bjerregard, Mathias B.
    Moller, Jan K.
    Bacher, Peder
    Madsen, Henrik
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2023, 12 (02)
  • [49] Application of probabilistic wind power forecasting in electricity markets
    Zhou, Z.
    Botterud, A.
    Wang, J.
    Bessa, R. J.
    Keko, H.
    Sumaili, J.
    Miranda, V.
    WIND ENERGY, 2013, 16 (03) : 321 - 338
  • [50] A selective review on conditional density estimation
    Ghosh, Trinetri
    Yu, Menggang
    Zhao, Jiwei
    STATISTICS AND ITS INTERFACE, 2024, 17 (03) : 549 - 564