Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:133
|
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 50 条
  • [31] BANDWIDTH SELECTION IN KERNEL DENSITY ESTIMATION: ORACLE INEQUALITIES AND ADAPTIVE MINIMAX OPTIMALITY
    Goldenshluger, Alexander
    Lepski, Oleg
    ANNALS OF STATISTICS, 2011, 39 (03): : 1608 - 1632
  • [32] Forecasting ramps of wind power production with numerical weather prediction ensembles
    Bossavy, Arthur
    Girard, Robin
    Kariniotakis, George
    WIND ENERGY, 2013, 16 (01) : 51 - 63
  • [33] Methods and Prospects for Probabilistic Forecasting of Wind Power
    Wu W.
    Qiao Y.
    Lu Z.
    Wang N.
    Zhou Q.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2017, 41 (18): : 167 - 175
  • [34] Reviews on uncertainty analysis of wind power forecasting
    Yan, Jie
    Liu, Yongqian
    Han, Shuang
    Wang, Yimei
    Feng, Shuanglei
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 52 : 1322 - 1330
  • [35] ON KERNEL DENSITY DERIVATIVE ESTIMATION
    JONES, MC
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (08) : 2133 - 2139
  • [36] Complementary Kernel Density Estimation
    Miao, Xu
    Rahimi, Ali
    Rao, Rajesh P. N.
    PATTERN RECOGNITION LETTERS, 2012, 33 (10) : 1381 - 1387
  • [37] Filtered kernel density estimation
    Marchette, DJ
    Priebe, CE
    Rogers, GW
    Solka, JL
    COMPUTATIONAL STATISTICS, 1996, 11 (02) : 95 - 112
  • [38] Wind Power Forecasting Method Based on Generalized Autoregressive Conditional Heteroskedasticity With Skewness and Kurtosis Model
    Chen H.
    Gao S.
    Wang Y.
    Zhang J.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2017, 37 (12): : 3456 - 3461
  • [39] Continuous and Distribution-Free Probabilistic Wind Power Forecasting: A Conditional Normalizing Flow Approach
    Wen, Honglin
    Pinson, Pierre
    Ma, Jinghuan
    Gu, Jie
    Jin, Zhijian
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2022, 13 (04) : 2250 - 2263
  • [40] Application of autoregressive dynamic adaptive (ARDA) model in realtime wind power forecasting
    Zhang, Fei
    Li, Peng-Cheng
    Gao, Lu
    Liu, Yong-Qian
    Ren, Xiao-Ying
    RENEWABLE ENERGY, 2021, 169 : 129 - 143