Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:133
|
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 50 条
  • [1] Using Conditional Kernel Density Estimation for Wind Power Density Forecasting
    Jeon, Jooyoung
    Taylor, James W.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 66 - 79
  • [2] Forecasting wind power quantiles using conditional kernel estimation
    Taylor, James W.
    Jeon, Jooyoung
    RENEWABLE ENERGY, 2015, 80 : 370 - 379
  • [3] Corrected multi-resolution ensemble model for wind power forecasting with real-time decomposition and Bivariate Kernel density estimation
    Liu, Hui
    Duan, Zhu
    ENERGY CONVERSION AND MANAGEMENT, 2020, 203
  • [4] Probability Density Forecasting of Wind Power Based on Transformer Network with Expectile Regression and Kernel Density Estimation
    Xiao, Haoyi
    He, Xiaoxia
    Li, Chunli
    ELECTRONICS, 2023, 12 (05)
  • [5] Time-adaptive quantile-copula for wind power probabilistic forecasting
    Bessa, Ricardo J.
    Miranda, V.
    Botterud, A.
    Zhou, Z.
    Wang, J.
    RENEWABLE ENERGY, 2012, 40 (01) : 29 - 39
  • [6] Bandwidth selection for kernel conditional density estimation
    Bashtannyk, DM
    Hyndman, RJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (03) : 279 - 298
  • [7] Kernel density estimation with adaptive varying window size
    Katkovnik, V
    Shmulevich, I
    PATTERN RECOGNITION LETTERS, 2002, 23 (14) : 1641 - 1648
  • [8] Shared kernel models for class conditional density estimation
    Titsias, MK
    Likas, AC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (05): : 987 - 997
  • [9] Probabilistic wind power forecasting based on logarithmic transformation and boundary kernel
    Zhang, Yao
    Wang, Jianxue
    Luo, Xu
    ENERGY CONVERSION AND MANAGEMENT, 2015, 96 : 440 - 451
  • [10] Adaptive Online Kernel Density Estimation Method
    Deng Q.-L.
    Qiu T.-Y.
    Shen F.-R.
    Zhao J.-X.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1173 - 1188