On the functional equation x plus f(y plus f(x))=y plus f(x plus f(y))

被引:3
作者
Raetz, Juerg [1 ]
机构
[1] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
关键词
Abelian groups; composite functional equations;
D O I
10.1007/s00010-013-0188-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an abelian group (G, + ,0) we consider the functional equation f : G -> G, x + f(y + f(x)) = y + f(x + f(y)) (for all x, y is an element of G), (1) most times together with the condition f(0) = 0. (0) Our main question is whether a solution of (1) boolean AND (0) must be additive, i.e., an endomorphism of G. We shall answer this question in the negative (Example 3.14) Ratz (Aequationes Math 81:300, 2011).
引用
收藏
页码:187 / 200
页数:14
相关论文
共 6 条
[1]   On the functional equation x plus f(y plus f(x)) = y plus f(x plus f(y)) [J].
Balcerowski, Marcin .
AEQUATIONES MATHEMATICAE, 2008, 75 (03) :297-303
[2]  
Brillouet-Belluot N., 2001, AEQUATIONES MATH, V61, P304
[3]   On a problem of N. Brillouët-Belluot [J].
Jarczyk J. ;
Jarczyk W. .
aequationes mathematicae, 2006, 72 (1-2) :198-200
[4]   ON PERIODICITY OF HOMEOMORPHISMS OF REAL LINE [J].
MCSHANE, N .
AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (06) :562-&
[5]  
Ratz J., 2011, AEQUATIONES MATH, V81, P300
[6]  
Suzuki M., 1980, SERIES COMPREHENSIVE, V247