On the functional equation x plus f(y plus f(x))=y plus f(x plus f(y))

被引:3
作者
Raetz, Juerg [1 ]
机构
[1] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
关键词
Abelian groups; composite functional equations;
D O I
10.1007/s00010-013-0188-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an abelian group (G, + ,0) we consider the functional equation f : G -> G, x + f(y + f(x)) = y + f(x + f(y)) (for all x, y is an element of G), (1) most times together with the condition f(0) = 0. (0) Our main question is whether a solution of (1) boolean AND (0) must be additive, i.e., an endomorphism of G. We shall answer this question in the negative (Example 3.14) Ratz (Aequationes Math 81:300, 2011).
引用
收藏
页码:187 / 200
页数:14
相关论文
共 4 条