Thermoelectric Properties of Solution Synthesized Nanostructured Materials

被引:25
作者
Finefrock, Scott W. [1 ]
Yang, Haoran [1 ]
Fang, Haiyu [1 ]
Wu, Yue [2 ]
机构
[1] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
[2] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50010 USA
来源
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 6 | 2015年 / 6卷
关键词
ZT; nanotechnology; bottom-up; nanocomposite; chalcogenides; wet-chemistry; BISMUTH TELLURIDE NANOPARTICLES; INTERNATIONAL ROUND-ROBIN; FIGURE-OF-MERIT; TRANSPORT-PROPERTIES; COLLOIDAL SYNTHESIS; CU2ZNGESE4; NANOCRYSTALS; SIGNIFICANT ENHANCEMENT; BULK THERMOELECTRICS; SULFIDE NANOCRYSTALS; SEEBECK COEFFICIENT;
D O I
10.1146/annurev-chembioeng-061114-123348
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, ZT, of four classes of materials: (Bi,Sb)(2)(Te,Se)(3), PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The ZT of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.
引用
收藏
页码:247 / 266
页数:20
相关论文
共 143 条
  • [1] Thermoelectric figure of merit of Ag2Se with Ag and Se excess
    Aliev, F. F.
    Jafarov, M. B.
    Eminova, V. I.
    [J]. SEMICONDUCTORS, 2009, 43 (08) : 977 - 979
  • [2] [Anonymous], Introduction to Thermoelectricity', DOI DOI 10.1007/978-3-642-00716-3
  • [3] Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials
    Bachmann, M.
    Czerner, M.
    Heiliger, C.
    [J]. PHYSICAL REVIEW B, 2012, 86 (11)
  • [4] Synthesis of various metal selenide nanostructures using the novel selenium precursor 1,5-bis(3-methylimidazole-2-selone)pentane
    Bai, Tianyu
    Li, Chunguang
    Liang, Daxin
    Li, Feifei
    Jin, Di
    Shi, Zhan
    Feng, Shouhua
    [J]. CRYSTENGCOMM, 2013, 15 (33): : 6483 - 6490
  • [5] Organic ligand displacement by metal salts to enhance nanoparticle functionality: thermoelectric properties of Ag2Te
    Cadavid, Doris
    Ibanez, Maria
    Shavel, Alexey
    Juan Dura, Oscar
    Lopez de la Torre, M. A.
    Cabot, Andreu
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (15) : 4864 - 4870
  • [6] Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te-PbTe
    Cadavid, Doris
    Ibanez, Maria
    Gorsse, Stephane
    Lopez, Antonio M.
    Cirera, Albert
    Ramon Morante, Joan
    Cabot, Andreu
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (12)
  • [7] Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys
    Cao, Y. Q.
    Zhu, T. J.
    Zhao, X. B.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (01)
  • [8] Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te
    Capps, J.
    Drymiotis, F.
    Lindsey, S.
    Tritt, T. M.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2010, 90 (09) : 677 - 681
  • [9] Thermoelectric metal tellurides with nanotubular structures synthesized by the Kirkendall effect and their reduced thermal conductivities
    Chai, Zhanli
    Wang, Hui
    Suo, Quanyu
    Wu, Niri
    Wang, Xiaojing
    Wang, Cheng
    [J]. CRYSTENGCOMM, 2014, 16 (17): : 3507 - 3514
  • [10] Hydrothermal synthesized nanostructure Bi-Sb-Te thermoelectric materials
    Chen, Z.
    Lin, M. Y.
    Xu, G. D.
    Chen, S.
    Zhang, J. H.
    Wang, M. M.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 588 : 384 - 387