Target Position and Speed Estimation Using LiDAR

被引:5
|
作者
Dayangac, Enes [1 ]
Baumann, Florian [1 ]
Aulinas, Josep [1 ]
Zobel, Matthias [1 ]
机构
[1] ADASENS Automot GmbH, Oberhof 13, D-88138 Weissensberg, Germany
来源
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016) | 2016年 / 9730卷
关键词
LiDAR; Velodyne; Kalman filter; Multi-hypotheses; 3D point cloud; Sensor fusion; Distance; Speed estimation;
D O I
10.1007/978-3-319-41501-7_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an efficient and reliable framework to estimate the position and speed of moving vehicles is proposed. The method fuses LiDAR data with image based object detection algorithm output. LiDAR sensors deliver 3D point clouds with a positioning accuracy of up to two centimeters. 2D object data leads to a significant reduction of the search space. Outliers removal techniques are applied to the reduced 3D point cloud for a more reliable representation of the data. Furthermore, a multi-hypothesis Kalman filter is implemented to determine the target object's speed. The accuracy of the position and velocity estimation is verified through real data and simulation. Additionally, the proposed framework is real-time capable and suitable for embedded-vision related applications.
引用
收藏
页码:470 / 477
页数:8
相关论文
共 50 条
  • [41] Improving Real-Time Position Estimation Using Correlated Noise Models
    Martin, Andrew
    Parry, Matthew
    Soundy, Andy W. R.
    Panckhurst, Bradley J.
    Brown, Phillip
    Molteno, Timothy C. A.
    Schumayer, Daniel
    SENSORS, 2020, 20 (20) : 1 - 14
  • [42] Estimation of Forest LAI Using Discrete Airborne LiDAR: A Review
    Tian, Luo
    Qu, Yonghua
    Qi, Jianbo
    REMOTE SENSING, 2021, 13 (12)
  • [43] Estimation and Discrimination of Aerosols Using Multiple Wavelength LWIR Lidar
    Warren, Russell E.
    Vanderbeek, Richard G.
    Ahl, Jeffrey L.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XI, 2010, 7665
  • [44] Speed, Rotor Position and Load Torque Estimation of the PMSM using an Extended Dynamic Model and Cascaded Sliding Mode Observers
    Comanescu, Mihai
    2016 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2016, : 978 - 983
  • [45] An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data
    Poulose, Alwin
    Eyobu, Odongo Steven
    Han, Dong Seog
    IEEE ACCESS, 2019, 7 : 11165 - 11177
  • [46] POSITION AND SPEED ESTIMATION OF A STEPPING MOTOR AS AN ACTUATOR OF DIESEL ENGINE FUEL RACK
    Medvesek, Ivana Golub
    Cibilic, Ante
    Tomas, Vinko
    BRODOGRADNJA, 2014, 65 (01): : 29 - 38
  • [47] Target alignment method of inertial confinement fusion facility based on position estimation
    Lin, Weiheng
    Zhu, Jianqiang
    Liu, Zhigang
    Pang, Xiangyang
    Zhou, Yang
    Cui, Wenhui
    Dong, Ziming
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (10) : 3703 - 3716
  • [48] Automatic Inspection System for Automotive LiDAR Alignment Using a Cubic Target
    Song, Hyeong-Seok
    You, Ji-Hwan
    Park, Jae-Eun
    Eskandarian, Azim
    Kim, Young-Keun
    IEEE SENSORS JOURNAL, 2022, 22 (03) : 2793 - 2801
  • [49] Speed estimation in wireless systems using wavelets
    Narasimhan, R
    Cox, DC
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (09) : 1357 - 1364
  • [50] Vehicle tracking and speed estimation using view-independent traffic cameras
    Kavitha, N.
    Chandrappa, D. N.
    INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2020, 6 (02) : 163 - 176