Target Position and Speed Estimation Using LiDAR

被引:5
|
作者
Dayangac, Enes [1 ]
Baumann, Florian [1 ]
Aulinas, Josep [1 ]
Zobel, Matthias [1 ]
机构
[1] ADASENS Automot GmbH, Oberhof 13, D-88138 Weissensberg, Germany
来源
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016) | 2016年 / 9730卷
关键词
LiDAR; Velodyne; Kalman filter; Multi-hypotheses; 3D point cloud; Sensor fusion; Distance; Speed estimation;
D O I
10.1007/978-3-319-41501-7_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an efficient and reliable framework to estimate the position and speed of moving vehicles is proposed. The method fuses LiDAR data with image based object detection algorithm output. LiDAR sensors deliver 3D point clouds with a positioning accuracy of up to two centimeters. 2D object data leads to a significant reduction of the search space. Outliers removal techniques are applied to the reduced 3D point cloud for a more reliable representation of the data. Furthermore, a multi-hypothesis Kalman filter is implemented to determine the target object's speed. The accuracy of the position and velocity estimation is verified through real data and simulation. Additionally, the proposed framework is real-time capable and suitable for embedded-vision related applications.
引用
收藏
页码:470 / 477
页数:8
相关论文
共 50 条
  • [31] Simulation and characterization of underwater target detection using LIDAR system
    M. Darwiesh
    A. F. El-Sherif
    M. F. Hassan
    H. S. Ayoub
    Y. H. Elbashar
    Journal of Optics, 2020, 49 : 416 - 426
  • [32] Speed estimation using stereoscopic effect
    Bourzeix, Francois
    Bourja, Omar
    Boukhris, Mohammed Ayoub
    Es-sbai, Najia
    10TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY AND INTERNET-BASED SYSTEMS SITIS 2014, 2014, : 147 - 151
  • [33] Speed estimation using simple line
    Bourja, Omar
    Maach, Abdelilah
    Zennayi, Yahya
    Bourzeix, Francois
    Guerin, Timothee
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 : 209 - 217
  • [34] Speed, EMF and Rotor Position Estimation of PMSM using Phase Locked Loop and Simple Sliding Mode Observer
    Comanescu, Mihai
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [35] An Improved Rotor Position and Speed Estimation Method for PMSM with Hall Sensors
    Li, Wei
    Zhang, Yang
    Zhu, Lixun
    PROCESSES, 2024, 12 (10)
  • [36] Evaluating the Effects of UAS Flight Speed on Lidar Snow Depth Estimation in a Heterogeneous Landscape
    Sullivan, Franklin B.
    Hunsaker, Adam G.
    Palace, Michael W.
    Jacobs, Jennifer M.
    REMOTE SENSING, 2023, 15 (21)
  • [37] GVIL: Tightly Coupled GNSS-Visual-Inertial-Lidar for Position Estimation in Challenging Environments
    Shi, Yanfang
    Lian, Baowang
    Zeng, Yonghong
    Kurniawan, Ernest
    Ma, Yugang
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [38] Estimation and optimisation of buildings' thermal load using LiDAR data
    Bizjak, Marko
    Zalik, Borut
    Stumberger, Gorazd
    Lukac, Niko
    BUILDING AND ENVIRONMENT, 2018, 128 : 12 - 21
  • [39] ESTIMATION OF PAIE USING AIRBORNE LIDAR DATA IN SOUTH KOREA
    Kwak, Doo-Ahn
    Lee, Woo-Kyun
    Kafatos, Menas
    Son, Yowhan
    Cho, Hyun-Kook
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1645 - 1648
  • [40] Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements
    Garcia-Gutierrez, Adrian
    Dominguez, Diego
    Lopez, Deibi
    Gonzalo, Jesus
    SENSORS, 2021, 21 (11)