Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure

被引:18
|
作者
Tambo, Naoki [1 ]
Liao, Yuxuan [2 ]
Zhou, Chun [3 ]
Ashley, Elizabeth Michiko [3 ]
Takahashi, Kouhei [1 ]
Nealey, Paul F. [3 ,4 ]
Naito, Yasuyuki [1 ]
Shiomi, Junichiro [2 ]
机构
[1] Panasonic Corp, Technol Div, Kyoto, Japan
[2] Univ Tokyo, Dept Mech Engn, Tokyo, Japan
[3] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[4] Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
CONDUCTIVITY; HEAT;
D O I
10.1126/sciadv.abc0075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Engineering the thermal conductivity of amorphous materials is highly essential for the thermal management of future electronic devices. Here, we demonstrate the impact of ultrafine nanostructuring on the thermal conductivity reduction of amorphous silicon nitride (a-Si3N4) thin films, in which the thermal transport is inherently impeded by the atomic disorders. Ultrafine nanostructuring with feature sizes below 20 nm allows us to fully suppress contribution of the propagating vibrational modes (propagons), leaving only the diffusive vibrational modes (diffusons) to contribute to thermal transport in a-Si3N4. A combination of the phonon-gas kinetics model and the Allen-Feldmann theory reproduced the measured results without any fitting parameters. The thermal conductivity reduction was explained as extremely strong diffusive boundary scattering of both propagons and diffusons. These findings give rise to substantial tunability of thermal conductivity of amorphous materials, which enables us to provide better thermal solutions in microelectronic devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Nanoscale Thermoelasticity in Silicon Nitride Membranes: Implications for Thermal Management
    Milloch, Alessandra
    Mincigrucci, Riccardo
    Capotondi, Flavio
    De Angelis, Dario
    Foglia, Laura
    Kurdi, Gabor
    Naumenko, Denys
    Pedersoli, Emanuele
    Pelli-Cresi, Jacopo S.
    Simoncig, Alberto
    Wehinger, Bjorn
    Masciovecchio, Claudio
    Bencivenga, Filippo
    ACS APPLIED NANO MATERIALS, 2021, 4 (10) : 10519 - 10527
  • [42] Thermal transport in one-dimensional superlattice and quasicrystal chains: Fullerene phononic crystal
    Li, Jian
    Zheng, Dong-qin
    Zhong, Wei-rong
    EPL, 2015, 112 (02)
  • [43] MODELING OF THERMAL TRANSPORT IN PHONONIC CRYSTALS USING FINITE DIFFERENCE TIME DOMAIN METHOD
    Dechaumphai, Edward
    Chen, Renkun
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 11, 2012, : 567 - 574
  • [44] DC and AC Hopping transport in metal/amorphous carbon nitride/metal devices
    Kleider, J. P.
    Gudovskikh, A. S.
    Godet, C.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1323 - 1326
  • [45] Radial dependence of thermal transport in silicon nanowires
    Verdier, Maxime
    Han, Yang
    Lacroix, David
    Chapuis, Pierre-Olivier
    Termentzidis, Konstantinos
    JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (01):
  • [46] Suppression of thermal transport in bent boron arsenide nanoribbons
    Jiao, Guanbo
    Qiao, Shuo
    Lyu, Jun
    Tao, Yi
    Yang, Lin
    PHYSICAL REVIEW APPLIED, 2024, 22 (05):
  • [47] Kink effects on thermal transport in silicon nanowires
    Zhao, Yang
    Yang, Lin
    Liu, Chenhan
    Zhang, Qian
    Chen, Yunfei
    Yang, Juekuan
    Li, Deyu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 137 : 573 - 578
  • [48] Dimensional Crossover of Thermal Transport in Hybrid Boron Nitride Nanostructures
    Sakhavand, Navid
    Shahsavari, Rouzbeh
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (33) : 18312 - 18319
  • [49] Influence of disorder on thermal transport properties of boron nitride nanostructures
    Sevik, Cem
    Kinaci, Alper
    Haskins, Justin B.
    Cagin, Tahir
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [50] Comparison of all atom and united atom models for thermal transport calculations of amorphous polyethylene
    Wu, James
    Mukherji, Debashish
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 211