Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure

被引:18
|
作者
Tambo, Naoki [1 ]
Liao, Yuxuan [2 ]
Zhou, Chun [3 ]
Ashley, Elizabeth Michiko [3 ]
Takahashi, Kouhei [1 ]
Nealey, Paul F. [3 ,4 ]
Naito, Yasuyuki [1 ]
Shiomi, Junichiro [2 ]
机构
[1] Panasonic Corp, Technol Div, Kyoto, Japan
[2] Univ Tokyo, Dept Mech Engn, Tokyo, Japan
[3] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[4] Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
CONDUCTIVITY; HEAT;
D O I
10.1126/sciadv.abc0075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Engineering the thermal conductivity of amorphous materials is highly essential for the thermal management of future electronic devices. Here, we demonstrate the impact of ultrafine nanostructuring on the thermal conductivity reduction of amorphous silicon nitride (a-Si3N4) thin films, in which the thermal transport is inherently impeded by the atomic disorders. Ultrafine nanostructuring with feature sizes below 20 nm allows us to fully suppress contribution of the propagating vibrational modes (propagons), leaving only the diffusive vibrational modes (diffusons) to contribute to thermal transport in a-Si3N4. A combination of the phonon-gas kinetics model and the Allen-Feldmann theory reproduced the measured results without any fitting parameters. The thermal conductivity reduction was explained as extremely strong diffusive boundary scattering of both propagons and diffusons. These findings give rise to substantial tunability of thermal conductivity of amorphous materials, which enables us to provide better thermal solutions in microelectronic devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Significant Anharmonicity of Thermal Transport in Amorphous Silica at High Temperature
    Yang, Lei
    Cao, Bing-Yang
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (11):
  • [22] Thermal and electrical properties of silicon nitride substrates
    Dow, H. S.
    Kim, W. S.
    Lee, J. W.
    AIP ADVANCES, 2017, 7 (09):
  • [23] Thermal transport in hexagonal boron nitride nanoribbons
    Tao Ouyang
    Chen, Yuanping
    Xie, Yuee
    Yang, Kaike
    Bao, Zhigang
    Zhong, Jianxin
    NANOTECHNOLOGY, 2010, 21 (24)
  • [24] Thermal transport properties of graphite carbon nitride
    Song, Jieren
    Xu, Zhonghai
    Tang, Lizhi
    Miao, Linlin
    Cai, Chaocan
    Bai, Yujiao
    Wang, Rongguo
    He, Xiaodong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (39) : 22785 - 22795
  • [25] Thermal transport property of boron nitride nanosheets
    Bhattacharjee, Amrito
    Jiang, Hongbo
    Li, Lu Hua
    Huang, Shaoming
    Chen, Ying Ian
    Cai, Qiran
    APPLIED PHYSICS REVIEWS, 2024, 11 (04):
  • [26] Phononic thermal transport properties of C3N nanotubes
    Elapolu, Mohan S. R.
    Tabarraei, Alireza
    Reihani, Amin
    Ramazani, Ali
    NANOTECHNOLOGY, 2020, 31 (03)
  • [27] Thermal properties of amorphous/crystalline silicon superlattices
    France-Lanord, Arthur
    Merabia, Samy
    Albaret, Tristan
    Lacroix, David
    Termentzidis, Konstantinos
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (35)
  • [28] Orientational order controls crystalline and amorphous thermal transport in superatomic crystals
    Ong, Wee-Liat
    O'Brien, Evan S.
    Dougherty, Patrick S. M.
    Paley, Daniel W.
    Higgs, C. Fred, III
    McGaughey, Alan J. H.
    Malen, Jonathan A.
    Roy, Xavier
    NATURE MATERIALS, 2017, 16 (01) : 83 - 88
  • [29] Effect of regulating compressive strains on thermal transport of silicon-based amorphous silica thin films and interfacial thermal resistance
    Li, Zhibin
    Wang, Hairong
    Zhao, Huiying
    Wang, Jiuhong
    Wei, Xueyong
    Gu, Hanqing
    VACUUM, 2022, 195
  • [30] Lithium Transport through Nanosized Amorphous Silicon Layers
    Hueger, Erwin
    Doerrer, Lars
    Rahn, Johanna
    Panzner, Tobias
    Stahn, Jochen
    Lilienkamp, Gerhard
    Schmidt, Harald
    NANO LETTERS, 2013, 13 (03) : 1237 - 1244