Quantum holonomy in the Lieb-Liniger model

被引:14
|
作者
Yonezawa, Nobuhiro [1 ]
Tanaka, Atushi [1 ,2 ]
Cheon, Taksu [3 ]
机构
[1] Osaka City Univ Adv Math Inst OCAMI, Sumiyoshi Ku, Osaka 5588585, Japan
[2] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[3] Kochi Univ Technol, Phys Lab, Kochi 7828502, Japan
关键词
ONE-DIMENSIONAL SYSTEM; BETHE-ANSATZ; BOSE-GAS; BOSONS;
D O I
10.1103/PhysRevA.87.062113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine a parametric cycle in the N-body Lieb-Liniger model that starts from the free system and goes through Tonks-Girardeau and super-Tonks-Girardeau regimes and comes back to the free system. We show the existence of exotic quantum holonomy, whose detailed workings are analyzed with the specific sample of two- and three-body systems. The classification of eigenstates based on clustering structure naturally emerges from the analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Stationary State After a Quench to the Lieb-Liniger from Rotating BECs
    Bucciantini, Leda
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (03) : 621 - 644
  • [32] Second quantization of Leinaas-Myrheim anyons in one dimension and their relation to the Lieb-Liniger model
    Posske, Thore
    Trauzettel, Bjoern
    Thorwart, Michael
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [33] One-particle density matrix of a trapped Lieb-Liniger anyonic gas
    Scopa, Stefano
    Piroli, Lorenzo
    Calabrese, Pasquale
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (09):
  • [34] A systematic 1/c-expansion of form factor sums for dynamical correlations in the Lieb-Liniger model
    Granet, Etienne
    Essler, Fabian H. L.
    SCIPOST PHYSICS, 2020, 9 (06):
  • [35] Relaxation dynamics of the Lieb-Liniger gas following an interaction quench: A coordinate Bethe-ansatz analysis
    Zill, Jan C.
    Wright, Tod M.
    Kheruntsyan, Karen V.
    Gasenzer, Thomas
    Davis, Matthew J.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [36] Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas
    Panfil, Milosz
    Caux, Jean-Sebastien
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [37] Connection between nonlocal one-body and local three-body correlations of the Lieb-Liniger model
    Olshanii, Maxim
    Dunjko, Vanja
    Minguzzi, Anna
    Lang, Guillaume
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [38] Neel-XXZ state overlaps: odd particle numbers and Lieb-Liniger scaling limit
    Brockmann, M.
    De Nardis, J.
    Wouters, B.
    Caux, J-S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (34)
  • [39] Large-N ground state of the Lieb-Liniger model and Yang-Mills theory on a two-sphere
    Flassig, Daniel
    Franca, Andre
    Pritzel, Alexander
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [40] A Hermite-Pade perspective on the renormalization group, with an application to the correlation function of Lieb-Liniger gas
    Dunjko, V.
    Olshanii, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (05)