Quantum holonomy in the Lieb-Liniger model

被引:14
|
作者
Yonezawa, Nobuhiro [1 ]
Tanaka, Atushi [1 ,2 ]
Cheon, Taksu [3 ]
机构
[1] Osaka City Univ Adv Math Inst OCAMI, Sumiyoshi Ku, Osaka 5588585, Japan
[2] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[3] Kochi Univ Technol, Phys Lab, Kochi 7828502, Japan
关键词
ONE-DIMENSIONAL SYSTEM; BETHE-ANSATZ; BOSE-GAS; BOSONS;
D O I
10.1103/PhysRevA.87.062113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine a parametric cycle in the N-body Lieb-Liniger model that starts from the free system and goes through Tonks-Girardeau and super-Tonks-Girardeau regimes and comes back to the free system. We show the existence of exotic quantum holonomy, whose detailed workings are analyzed with the specific sample of two- and three-body systems. The classification of eigenstates based on clustering structure naturally emerges from the analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Interaction quench in a Lieb-Liniger model and the KPZ equation with flat initial conditions
    Calabrese, Pasquale
    Le Doussal, Pierre
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [22] The Whitham approach to the c → 0 limit of the Lieb-Liniger model and generalized hydrodynamics
    Bettelheim, Eldad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (20)
  • [23] Monte Carlo Bethe-ansatz approach for the study of the Lieb-Liniger model
    Zhang, Zhe-Hao
    Yu, Yi-Cong
    Chen, Yang-Yang
    Cheng, Song
    Guan, Xi-Wen
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [24] Correspondence between dark solitons and the type II excitations of the Lieb-Liniger model
    Karpiuk, Tomasz
    Sowinski, Tomasz
    Gajda, Mariusz
    Rzazewski, Kazimierz
    Brewczyk, Miroslaw
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [25] Gruneisen parameters for the Lieb-Liniger and Yang-Gaudin models
    Peng, Li
    Yu, Yicong
    Guan, Xi-Wen
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [26] One-body dynamical correlation function of the Lieb-Liniger model at finite temperature
    Cheng, Song
    Chen, Yang-Yang
    Guan, Xi-Wen
    Yang, Wen-Li
    Lin, Hai-Qing
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [28] One-dimensional Lieb-Liniger Bose gas as nonrelativistic limit of the sinh-Gordon model
    Kormos, M.
    Mussardo, G.
    Trombettoni, A.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [29] Ultracold atoms in quasi-one-dimensional traps: A step beyond the Lieb-Liniger model
    Jachymski, Krzysztof
    Meinert, Florian
    Veksler, Hagar
    Julienne, Paul S.
    Fishman, Shmuel
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [30] Many-Body Dynamical Localization in a Kicked Lieb-Liniger Gas
    Rylands, Colin
    Rozenbaum, Efim
    Galitski, Victor
    Konik, Robert
    PHYSICAL REVIEW LETTERS, 2020, 124 (15)