Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

被引:58
作者
Chen, Xiaoshu [1 ]
Lindquist, Nathan C. [1 ,2 ]
Klemme, Daniel J. [1 ]
Nagpal, Prashant [3 ]
Norris, David J. [4 ]
Oh, Sang-Hyun [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Bethel Univ, Dept Phys, St Paul, MN 55112 USA
[3] Univ Colorado, Chem & Biol Engn, Boulder, CO 80303 USA
[4] ETH, Opt Mat Engn Lab, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Optical antenna; surface-enhanced Raman scattering (SERS); template stripping; gap plasmon; atomic layer deposition; atomic layer lithography; ENHANCED RAMAN-SPECTROSCOPY; ATOMIC LAYER LITHOGRAPHY; SURFACE-PLASMONS; WAVE-GUIDES; OPTICAL ANTENNAS; NANOGAP ARRAYS; METALLIC TIPS; RESONATORS; SINGLE; LIGHT;
D O I
10.1021/acs.nanolett.6b04113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip-gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip-gap geometry. The resulting nanometric hotspot volume is on the order of lambda(3)/10(6). Experimentally, Raman enhancement factors exceeding 10(7) are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.
引用
收藏
页码:7849 / 7856
页数:8
相关论文
共 57 条
  • [51] Nanofocusing in laterally tapered plasmonic waveguides
    Verhagen, Ewold
    Polman, Albert
    Kuipers, L.
    [J]. OPTICS EXPRESS, 2008, 16 (01) : 45 - 57
  • [52] Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates
    Wang, H
    Levin, CS
    Halas, NJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (43) : 14992 - 14993
  • [53] Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy
    Ward, Daniel R.
    Grady, Nathaniel K.
    Levin, Carly S.
    Halas, Naomi J.
    Wu, Yanpeng
    Nordlander, Peter
    Natelson, Douglas
    [J]. NANO LETTERS, 2007, 7 (05) : 1396 - 1400
  • [54] HREELS, XPS, and electrochemical study of benzenethiol adsorption on Au(111)
    Whelan, CM
    Smyth, MR
    Barnes, CJ
    [J]. LANGMUIR, 1999, 15 (01) : 116 - 126
  • [55] Surface-plasmon-enhanced optical forces in silver nanoaggregates -: art. no. 246802
    Xu, HX
    Käll, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (24) : 246802 - 246802
  • [56] Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, Three-Dimensional Nanohole Arrays
    Yang, Jiun-Chan
    Gao, Hanwei
    Suh, Jae Yong
    Zhou, Wei
    Lee, Min Hyung
    Odom, Teri W.
    [J]. NANO LETTERS, 2010, 10 (08) : 3173 - 3178
  • [57] High-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithography
    Yoo, Daehan
    Ngoc-Cuong Nguyen
    Martin-Moreno, Luis
    Mohr, Daniel A.
    Carretero-Palacios, Sol
    Shaver, Jonah
    Peraire, Jaime
    Ebbesen, Thomas W.
    Oh, Sang-Hyun
    [J]. NANO LETTERS, 2016, 16 (03) : 2040 - 2046