Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

被引:58
作者
Chen, Xiaoshu [1 ]
Lindquist, Nathan C. [1 ,2 ]
Klemme, Daniel J. [1 ]
Nagpal, Prashant [3 ]
Norris, David J. [4 ]
Oh, Sang-Hyun [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Bethel Univ, Dept Phys, St Paul, MN 55112 USA
[3] Univ Colorado, Chem & Biol Engn, Boulder, CO 80303 USA
[4] ETH, Opt Mat Engn Lab, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Optical antenna; surface-enhanced Raman scattering (SERS); template stripping; gap plasmon; atomic layer deposition; atomic layer lithography; ENHANCED RAMAN-SPECTROSCOPY; ATOMIC LAYER LITHOGRAPHY; SURFACE-PLASMONS; WAVE-GUIDES; OPTICAL ANTENNAS; NANOGAP ARRAYS; METALLIC TIPS; RESONATORS; SINGLE; LIGHT;
D O I
10.1021/acs.nanolett.6b04113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip-gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip-gap geometry. The resulting nanometric hotspot volume is on the order of lambda(3)/10(6). Experimentally, Raman enhancement factors exceeding 10(7) are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.
引用
收藏
页码:7849 / 7856
页数:8
相关论文
共 57 条
  • [21] Plasmonics: An Emerging Field Fostered by Nano Letters
    Halas, Naomi J.
    [J]. NANO LETTERS, 2010, 10 (10) : 3816 - 3822
  • [22] Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics
    Haynes, CL
    Van Duyne, RP
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) : 5599 - 5611
  • [23] Oxidation Sharpening, Template Stripping, and Passivation of Ultra-Sharp Metallic Pyramids and Wedges
    Im, Hyungsoon
    Oh, Sang-Hyun
    [J]. SMALL, 2014, 10 (04) : 680 - 684
  • [24] Vertically Oriented Sub-10-nm Plasmonic Nanogap Arrays
    Im, Hyungsoon
    Bantz, Kyle C.
    Lindquist, Nathan C.
    Haynes, Christy L.
    Oh, Sang-Hyun
    [J]. NANO LETTERS, 2010, 10 (06) : 2231 - 2236
  • [25] Size-Reduction Template Stripping of Smooth Curved Metallic Tips for Adiabatic Nanofocusing of Surface Plasmons
    Johnson, Timothy W.
    Klemme, Daniel J.
    Oh, Sang-Hyun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (21) : 13624 - 13629
  • [26] Highly Reproducible Near-Field Optical Imaging with Sub-20-nm Resolution Based on Template-Stripped Gold Pyramids
    Johnson, Timothy W.
    Lapin, Zachary J.
    Beams, Ryan
    Lindquist, Nathan C.
    Rodrigo, Sergio G.
    Novotny, Lukas
    Oh, Sang-Hyun
    [J]. ACS NANO, 2012, 6 (10) : 9168 - 9174
  • [27] Self-induced back-action optical trapping of dielectric nanoparticles
    Juan, Mathieu L.
    Gordon, Reuven
    Pang, Yuanjie
    Eftekhari, Fatima
    Quidant, Romain
    [J]. NATURE PHYSICS, 2009, 5 (12) : 915 - 919
  • [28] Photodetection with Active Optical Antennas
    Knight, Mark W.
    Sobhani, Heidar
    Nordlander, Peter
    Halas, Naomi J.
    [J]. SCIENCE, 2011, 332 (6030) : 702 - 704
  • [29] High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures
    Koh, Ai Leen
    Fernandez-Dominguez, Antonio I.
    McComb, David W.
    Maier, Stefan A.
    Yang, Joel K. W.
    [J]. NANO LETTERS, 2011, 11 (03) : 1323 - 1330
  • [30] Wedge Waveguides and Resonators for Quantum Plasmonics
    Kress, Stephan J. P.
    Antolinez, Felipe V.
    Richner, Patrizia
    Jayanti, Sriharsha V.
    Kim, David K.
    Prins, Ferry
    Riedinger, Andreas
    Fischer, Maximilian P. C.
    Meyer, Stefan
    McPeak, Kevin M.
    Poulikakos, Dimos
    Norris, David J.
    [J]. NANO LETTERS, 2015, 15 (09) : 6267 - 6275