Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

被引:58
作者
Chen, Xiaoshu [1 ]
Lindquist, Nathan C. [1 ,2 ]
Klemme, Daniel J. [1 ]
Nagpal, Prashant [3 ]
Norris, David J. [4 ]
Oh, Sang-Hyun [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Bethel Univ, Dept Phys, St Paul, MN 55112 USA
[3] Univ Colorado, Chem & Biol Engn, Boulder, CO 80303 USA
[4] ETH, Opt Mat Engn Lab, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Optical antenna; surface-enhanced Raman scattering (SERS); template stripping; gap plasmon; atomic layer deposition; atomic layer lithography; ENHANCED RAMAN-SPECTROSCOPY; ATOMIC LAYER LITHOGRAPHY; SURFACE-PLASMONS; WAVE-GUIDES; OPTICAL ANTENNAS; NANOGAP ARRAYS; METALLIC TIPS; RESONATORS; SINGLE; LIGHT;
D O I
10.1021/acs.nanolett.6b04113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip-gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip-gap geometry. The resulting nanometric hotspot volume is on the order of lambda(3)/10(6). Experimentally, Raman enhancement factors exceeding 10(7) are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.
引用
收藏
页码:7849 / 7856
页数:8
相关论文
共 57 条
  • [1] Superfocusing of surface polaritons in the conical structure
    Babadjanyan, AJ
    Margaryan, NL
    Nerkararyan, KV
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 87 (08) : 3785 - 3788
  • [2] Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes
    Barik, Avijit
    Chen, Xiaoshu
    Oh, Sang-Hyun
    [J]. NANO LETTERS, 2016, 16 (10) : 6317 - 6324
  • [3] Optical Antennas
    Bharadwaj, Palash
    Deutsch, Bradley
    Novotny, Lukas
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03): : 438 - 483
  • [4] Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths
    Boltasseva, Alexandra
    Volkov, Valentyn S.
    Nielsen, Rasmus B.
    Moreno, Esteban
    Rodrigo, Sergio G.
    Bozhevolnyi, Sergey I.
    [J]. OPTICS EXPRESS, 2008, 16 (08) : 5252 - 5260
  • [5] Near-field second-harmonic generation induced by local field enhancement
    Bouhelier, A
    Beversluis, M
    Hartschuh, A
    Novotny, L
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (01) : 4
  • [6] Channel plasmon subwavelength waveguide components including interferometers and ring resonators
    Bozhevolnyi, SI
    Volkov, VS
    Devaux, E
    Laluet, JY
    Ebbesen, TW
    [J]. NATURE, 2006, 440 (7083) : 508 - 511
  • [7] Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA)
    Brown, Lisa V.
    Yang, Xiao
    Zhao, Ke
    Zheng, Bob Y.
    Nordlander, Peter
    Halas, Naomi J.
    [J]. NANO LETTERS, 2015, 15 (02) : 1272 - 1280
  • [8] Burgos SP, 2010, NAT MATER, V9, P407, DOI [10.1038/nmat2747, 10.1038/NMAT2747]
  • [9] Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer
    Challener, W. A.
    Peng, Chubing
    Itagi, A. V.
    Karns, D.
    Peng, Wei
    Peng, Yingguo
    Yang, XiaoMin
    Zhu, Xiaobin
    Gokemeijer, N. J.
    Hsia, Y. -T.
    Ju, G.
    Rottmayer, Robert E.
    Seigler, Michael A.
    Gage, E. C.
    [J]. NATURE PHOTONICS, 2009, 3 (04) : 220 - 224
  • [10] Nanogap-Enhanced Infrared Spectroscopy with Template-Stripped Wafer-Scale Arrays of Buried Plasmonic Cavities
    Chen, Xiaoshu
    Ciraci, Cristian
    Smith, David R.
    Oh, Sang-Hyun
    [J]. NANO LETTERS, 2015, 15 (01) : 107 - 113