Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure

被引:22
作者
Artidiello, Santiago [1 ]
Cordero, Alicia [2 ]
Torregrosa, Juan R. [2 ]
Vassileva, Maria P. [1 ]
机构
[1] Inst Tecnol Santo Domingo INTEC, Santo Domingo, Dominican Rep
[2] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Nonlinear system; Optimal order; Weight function procedure; Divided difference operator; Efficiency index; 4TH-ORDER METHODS; SYSTEMS; FAMILY; ORDER;
D O I
10.1016/j.amc.2015.07.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, from Traub's method and by applying weight function technique, a bi-parametric family of predictor-corrector iterative schemes with optimal fourth-order of convergence, for solving nonlinear equations, is presented. By using some algebraic manipulations and a divided difference operator, we extend this family to the multidimensional case, preserving its order of convergence. Some numerical test are made in order to confirm the theoretical results and to compare the new methods with other known ones. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1064 / 1071
页数:8
相关论文
共 21 条
  • [1] Abad M, 2014, B MATH SOC SCI MATH, V57, P133
  • [2] Fourth- and Fifth-Order Methods for Solving Nonlinear Systems of Equations: An Application to the Global Positioning System
    Abad, Manuel F.
    Cordero, Alicia
    Torregrosa, Juan R.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [3] Preliminary Orbit Determination of Artificial Satellites: A Vectorial Sixth-Order Approach
    Andreu, Carlos
    Cambil, Noelia
    Cordero, Alicia
    Torregrosa, Juan R.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] Artidiello S., 2014, THESIS SERVICIO PUBL
  • [5] Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods
    Artidiello, Santiago
    Chicharro, Francisco
    Cordero, Alicia
    Torregrosa, Juan R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (10) : 2049 - 2060
  • [6] Some fourth-order iterative methods for solving nonlinear equations
    Chun, Changbum
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 454 - 459
  • [7] Variants of Newton's Method using fifth-order quadrature formulas
    Cordero, A.
    Torregrosa, Juan R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 686 - 698
  • [8] Solving nonlinear problems by Ostrowski-Chun type parametric families
    Cordero, Alicia
    Maimo, Javier G.
    Torregrosa, Juan R.
    Vassileva, Maria P.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (01) : 430 - 449
  • [9] A modified Newton-Jarratt's composition
    Cordero, Alicia
    Hueso, Jose L.
    Martinez, Eulalia
    Torregrosa, Juan R.
    [J]. NUMERICAL ALGORITHMS, 2010, 55 (01) : 87 - 99
  • [10] Hermite MC., 1878, J Fr Die Reine und Angew Math (Crelles Journal), V1878, P70, DOI [10.1515/crelle-1878-18788405, DOI 10.1515/CRELLE-1878-18788405]