Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search

被引:0
作者
Fu, Mengyu [1 ]
Kuntz, Alan [1 ]
Salzman, Oren [2 ]
Alterovitz, Ron [1 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
来源
ROBOTICS: SCIENCE AND SYSTEMS XV | 2019年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SHORTEST PATHS; OPTIMIZATION; ALGORITHMS;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Inspection planning, the task of planning motions that allow a robot to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion planning roadmap using sampling-based algorithms, and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We demonstrate IRIS's efficacy on a simulated planar 5DOF manipulator inspection task and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered anatomy segmented from patient CT data. We show that IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] Almadhoun R., 2016, International Journal of Advanced Robotic Systems, V13, DOI DOI 10.1177/1729881416663664
  • [2] Continuum Reconfigurable Parallel Robots for Surgery: Shape Sensing and State Estimation With Uncertainty
    Anderson, Patrick L.
    Mahoney, Arthur W.
    Webster, Robert James, III
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03): : 1617 - 1624
  • [3] [Anonymous], 2006, Planning algorithms, Complexity
  • [4] [Anonymous], 2013, OCEANS BERGEN 2013 M, DOI DOI 10.1109/OCEANS-BERGEN.2013.6608142
  • [5] [Anonymous], 1997, EOS T AM GEOPHYS UN
  • [6] Robotic Tools for Deep Water Archaeology: Surveying an Ancient Shipwreck with an Autonomous Underwater Vehicle
    Bingham, Brian
    Foley, Brendan
    Singh, Hanumant
    Camilli, Richard
    Delaporta, Katerina
    Eustice, Ryan
    Mallios, Angelos
    Mindell, David
    Roman, Christopher
    Sakellariou, Dimitris
    [J]. JOURNAL OF FIELD ROBOTICS, 2010, 27 (06) : 702 - 717
  • [7] An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees
    Bircher, Andreas
    Alexis, Kostas
    Schwesinger, Ulrich
    Omari, Sammy
    Burri, Michael
    Siegwart, Roland
    [J]. ROBOTICA, 2017, 35 (06) : 1327 - 1340
  • [8] Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots
    Bircher, Andreas
    Kamel, Mina
    Alexis, Kostas
    Burri, Michael
    Oettershagen, Philipp
    Omari, Sammy
    Mantel, Thomas
    Siegwart, Roland
    [J]. AUTONOMOUS ROBOTS, 2016, 40 (06) : 1059 - 1078
  • [9] Bircher A, 2015, IEEE INT CONF ROBOT, P6423, DOI 10.1109/ICRA.2015.7140101
  • [10] A Gradient-Based Inspection Path Optimization Approach
    Bogaerts, Boris
    Sels, Seppe
    Vanlanduit, Steve
    Penne, Rudi
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (03): : 2646 - 2653