Observer design of descriptor nonlinear system with nonlinear outputs by using W1,2-optimality criterion

被引:1
作者
Hamaz, Abdelghani [1 ]
Draa, Khadidja Chaib [2 ]
Bedouhene, Fazia [1 ]
Zemouche, Ali [3 ,4 ]
Rajamani, Rajesh [5 ]
机构
[1] Univ Mouloud Mammeri, Lab Pure & Appl Math, BP 17 RP, Tizi Ouzou 15000, Algeria
[2] Univ Luxembourg, 6a Ave Hauts Fourneaux, L-4362 Esch Sur Alzette, Luxembourg
[3] Univ Lorraine, GRAN UMR CNRS 7039, F-54400 Cosnes, France
[4] Univ Lorraine, GRAN UMR CNRS 7039, F-54400 Romain, France
[5] Univ Minnesota, Dept Mech Engn, Laboratmy Innovat Sensing Estimat & Control, 111 Church St SE, Minneapolis, MN 55455 USA
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2019年 / 356卷 / 06期
关键词
UNKNOWN INPUT OBSERVERS; H-INFINITY; LMI CONDITIONS; LIPSCHITZ; STATE;
D O I
10.1016/j.jfranklin.2019.02.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with nonlinear observer design for a class of nonlinear systems with nonlinear out-put put measurements. The proposed methodology is based on the use of Linear Matrix Inequalities (LMIs) to handle a problem of W-1,W-2-convergence criterion. Some new assumptions and convenient Young's formulation are used to get less conservative LMI conditions compared to the literature. Indeed, the obtained LMIs contain additional decision variables, which render the conditions more general. Furthermore, due to the presence of nonlinearities in both the process dynamics and the output measurements, the class of systems studied in this paper is more general than those available in the literature in the same LMI context. Two numerical examples are presented to show the effectiveness and superiority of the new design procedure compared to the H-infinity method. (c) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3531 / 3553
页数:23
相关论文
共 44 条
[1]   Observers for systems with nonlinearities satisfying incremental quadratic constraints [J].
Acikmese, Behcet ;
Corless, Martin .
AUTOMATICA, 2011, 47 (07) :1339-1348
[2]   Receding-horizon estimation for discrete-time linear systems [J].
Alessandri, A ;
Baglietto, M ;
Battistelli, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) :473-478
[3]  
Alessandri A., 2007, INT MATH FORUM, V2, P593
[4]  
Alessandri A., 1999, 335 CNRIAN
[5]   Robust Observers for a Class of Nonlinear Systems Using PEM Fuel Cells as a Simulated Case Study [J].
Benallouch, Mohamed ;
Outbib, Rachid ;
Boutayeb, Mohamed ;
Laroche, Edouard .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (01) :291-298
[6]   Observers for a non-Lipschitz triangular form [J].
Bernard, Pauline ;
Praly, Laurent ;
Andrieu, Vincent .
AUTOMATICA, 2017, 82 :301-313
[7]   W-STABILITY AND LOCAL INPUT-OUTPUT STABILITY RESULTS [J].
BOURLES, H ;
COLLEDANI, F .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (06) :1102-1108
[8]   RETRACTED: Robust Observer Design for Unknown Inputs Takagi-Sugeno Models (Retracted Article) [J].
Chadli, Mohammed ;
Karimi, Hamid Reza .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (01) :158-164
[9]   Robust fault reconstruction for a class of infinitely unobservable descriptor systems [J].
Chan, Joseph Chang Lun ;
Tan, Chee Pin ;
Trinh, Hieu .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (08) :1646-1655
[10]   A robust circle criterion observer with application to neural mass models [J].
Chong, Michelle ;
Postoyan, Romain ;
Nesic, Dragan ;
Kuhlmann, Levin ;
Varsavsky, Andrea .
AUTOMATICA, 2012, 48 (11) :2986-2989