Stress integration schemes for novel homogeneous anisotropic hardening model

被引:54
作者
Lee, Jinwoo [1 ]
Lee, Myoung-Gyu [1 ]
Barlat, Frederic [1 ]
Kim, Ji Hoon [2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous Technol, Pohang 790784, Gyeong Buk, South Korea
[2] Korea Inst Mat Sci, Mat Deformat Grp, Chang Won 642831, Gyeong Nam, South Korea
基金
新加坡国家研究基金会;
关键词
Elasto-plasticity; Stress integration algorithm; Anisotropic hardening; Iso-error map; Closest point projection method; Cutting plane algorithm; SPRING-BACK EVALUATION; ELASTOPLASTIC CONSTITUTIVE RELATIONS; INCREMENTAL DEFORMATION-THEORY; YIELD FUNCTIONS; STRAIN-PATH; METAL PLASTICITY; FORMING SIMULATIONS; CYCLIC PLASTICITY; SHEETS; ELEMENT;
D O I
10.1016/j.cma.2012.07.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Numerical formulations and implementation of stress integration algorithms in the elasto-plastic finite element method are provided for the homogeneous yield function-based anisotropic hardening (HAH) model. This model is able to describe complex material behavior under non-monotonic loading conditions. Two numerical algorithms based on the semi-explicit and fully implicit schemes are compared in terms of accuracy. To efficiently treat the yield locus distortion when the strain path changes, a multi-step Newton-Raphson method is proposed to calculate the first and second derivatives of the HAH yield surface. For the validation of the developed numerical algorithms, the r-value anisotropy is compared for the conventional yield model with classical isotropic hardening and for the HAH model. Moreover, detailed error analysis is presented using iso-error maps. The results show that the fully implicit stress integration algorithm based on the closet point projection method leads to better accuracy in general. However, the semi-explicit algorithm also provides comparable accuracy if an appropriate time increment is chosen. Furthermore in spite of the yield surface distortion, the developed numerical algorithms can successfully update stress with the equivalent level of the error for the conventional yield model. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 92
页数:20
相关论文
共 55 条
[1]   Forming of aluminum alloys at elevated temperatures - Part 2: Numerical modeling and experimental verification [J].
Abedrabbo, N ;
Pourboghrat, F ;
Carsley, J .
INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (02) :342-373
[2]  
[Anonymous], 1964, METHODS COMPUT PHYS
[3]  
Armstrong P J, 1966, CENTRAL ELECT GENERA
[4]   Description of anisotropic behaviour of AA3103-0 aluminium alloy using two recent yield criteria [J].
Banabic, D ;
Cazacu, O ;
Barlat, F ;
Comsa, DS ;
Wagner, S ;
Siegert, K .
JOURNAL DE PHYSIQUE IV, 2003, 105 :297-304
[5]   Plane stress yield function for aluminum alloy sheets - part 1: theory [J].
Barlat, F ;
Brem, JC ;
Yoon, JW ;
Chung, K ;
Dick, RE ;
Lege, DJ ;
Pourgoghrat, F ;
Choi, SH ;
Chu, E .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (09) :1297-1319
[6]   Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample [J].
Barlat, F ;
Duarte, JMF ;
Gracio, JJ ;
Lopes, AB ;
Rauch, EF .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (08) :1215-1244
[7]  
Barlat F., INT J PLAST IN PRESS
[8]   An alternative to kinematic hardening in classical plasticity [J].
Barlat, Frederic ;
Gracio, Jose J. ;
Lee, Myoung-Gyu ;
Rauch, Edgar F. ;
Vincze, Gabriela .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (09) :1309-1327
[9]   Experimental characterization and model identification of directional hardening effects in metals for complex strain path changes [J].
Boers, S. H. A. ;
Schreurs, P. J. G. ;
Geers, M. G. D. ;
Levkovitch, V. ;
Wang, J. ;
Svendsen, B. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (10) :1361-1374
[10]   Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals [J].
Cao, Jian ;
Lee, Wonoh ;
Cheng, Hang Shawn ;
Seniw, Mark ;
Wang, Hui-Ping ;
Chung, Kwansoo .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (05) :942-972