Nuclear power plant components condition monitoring by probabilistic support vector machine

被引:67
作者
Liu, Jie [1 ,2 ]
Seraoui, Redouane [3 ]
Vitelli, Valeria [1 ,2 ]
Zio, Enrico [1 ,2 ,4 ]
机构
[1] Ecole Cent Paris, European Fdn New Energy Elect France, Chair Syst Sci & Energet Challenge, Chatenay Malabry, France
[2] Supelec Ecole Super Elect, Gif Sur Yvette, France
[3] EDF R&D, Simulat & Informat TEchnol Power Generat Syst STE, Chatou, France
[4] Politecn Milan, Dept Energy, I-20133 Milan, Italy
关键词
Probabilistic support vector machine; Condition monitoring; Nuclear power plant; Point prediction; THINNED PIPE BENDS; FAULT-DIAGNOSIS; STEAM-GENERATOR; HTGR COMPONENTS; REGRESSION; CLASSIFICATION; SYSTEM; MODEL;
D O I
10.1016/j.anucene.2013.01.005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP) components is proposed, for the purposes of condition monitoring. It builds on a modified version of the Probabilistic Support Vector Regression (PSVR) method, which is based on the Bayesian probabilistic paradigm with a Gaussian prior. Specific techniques are introduced for the tuning of the PSVR hyerparameters, the model identification and the uncertainty analysis. A real case study is considered, regarding the prediction of a drifting process parameter of a NPP component. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 55 条
  • [41] A tutorial on support vector regression
    Smola, AJ
    Schölkopf, B
    [J]. STATISTICS AND COMPUTING, 2004, 14 (03) : 199 - 222
  • [42] Sollich P., 1999, TECHNICAL REPORT
  • [43] Support vector regression model for the estimation of γ-ray buildup factors for multi-layer shields
    Trontl, Kresimir
    Smuc, Tomislav
    Pevec, Dubravko
    [J]. ANNALS OF NUCLEAR ENERGY, 2007, 34 (12) : 939 - 952
  • [44] Vapnik V., 1995, The nature of statistical learning theory
  • [45] Vapnik V.N., 1996, P 10 NEUR INF PROC S
  • [46] Prognostic and diagnostic monitoring of complex systems for product lifecycle management: Challenges and opportunities
    Venkatasubramanian, V
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (06) : 1253 - 1263
  • [47] Vladimir C., 1998, LEARNING DATA CONCEP
  • [48] Prognosis of machine health condition using neuro-fuzzy systems
    Wang, WQ
    Golnaraghi, MF
    Ismail, F
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (04) : 813 - 831
  • [49] Williams CKI, 1997, ADV NEUR IN, V9, P295
  • [50] On-Line Fault Recognition System for the Analogic Channels of VVER 1000/400 Nuclear Reactors
    Yazikov, Mikhail
    Gola, Giulio
    Berg, Oivind
    Porsmyr, Jan
    Valseth, Helge
    Roverso, Davide
    Hoffmann, Mario
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (02) : 411 - 418