Nuclear power plant components condition monitoring by probabilistic support vector machine

被引:70
作者
Liu, Jie [1 ,2 ]
Seraoui, Redouane [3 ]
Vitelli, Valeria [1 ,2 ]
Zio, Enrico [1 ,2 ,4 ]
机构
[1] Ecole Cent Paris, European Fdn New Energy Elect France, Chair Syst Sci & Energet Challenge, Chatenay Malabry, France
[2] Supelec Ecole Super Elect, Gif Sur Yvette, France
[3] EDF R&D, Simulat & Informat TEchnol Power Generat Syst STE, Chatou, France
[4] Politecn Milan, Dept Energy, I-20133 Milan, Italy
关键词
Probabilistic support vector machine; Condition monitoring; Nuclear power plant; Point prediction; THINNED PIPE BENDS; FAULT-DIAGNOSIS; STEAM-GENERATOR; HTGR COMPONENTS; REGRESSION; CLASSIFICATION; SYSTEM; MODEL;
D O I
10.1016/j.anucene.2013.01.005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP) components is proposed, for the purposes of condition monitoring. It builds on a modified version of the Probabilistic Support Vector Regression (PSVR) method, which is based on the Bayesian probabilistic paradigm with a Gaussian prior. Specific techniques are introduced for the tuning of the PSVR hyerparameters, the model identification and the uncertainty analysis. A real case study is considered, regarding the prediction of a drifting process parameter of a NPP component. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 55 条
[41]   A tutorial on support vector regression [J].
Smola, AJ ;
Schölkopf, B .
STATISTICS AND COMPUTING, 2004, 14 (03) :199-222
[42]  
Sollich P., 1999, TECHNICAL REPORT
[43]   Support vector regression model for the estimation of γ-ray buildup factors for multi-layer shields [J].
Trontl, Kresimir ;
Smuc, Tomislav ;
Pevec, Dubravko .
ANNALS OF NUCLEAR ENERGY, 2007, 34 (12) :939-952
[44]  
Vapnik V., 1995, The nature of statistical learning theory
[45]  
Vapnik V.N., 1996, P 10 NEUR INF PROC S
[46]   Prognostic and diagnostic monitoring of complex systems for product lifecycle management: Challenges and opportunities [J].
Venkatasubramanian, V .
COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (06) :1253-1263
[47]  
Vladimir C., 1998, LEARNING DATA CONCEP
[48]   Prognosis of machine health condition using neuro-fuzzy systems [J].
Wang, WQ ;
Golnaraghi, MF ;
Ismail, F .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (04) :813-831
[49]  
Williams CKI, 1997, ADV NEUR IN, V9, P295
[50]   On-Line Fault Recognition System for the Analogic Channels of VVER 1000/400 Nuclear Reactors [J].
Yazikov, Mikhail ;
Gola, Giulio ;
Berg, Oivind ;
Porsmyr, Jan ;
Valseth, Helge ;
Roverso, Davide ;
Hoffmann, Mario .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (02) :411-418