Nuclear power plant components condition monitoring by probabilistic support vector machine

被引:67
作者
Liu, Jie [1 ,2 ]
Seraoui, Redouane [3 ]
Vitelli, Valeria [1 ,2 ]
Zio, Enrico [1 ,2 ,4 ]
机构
[1] Ecole Cent Paris, European Fdn New Energy Elect France, Chair Syst Sci & Energet Challenge, Chatenay Malabry, France
[2] Supelec Ecole Super Elect, Gif Sur Yvette, France
[3] EDF R&D, Simulat & Informat TEchnol Power Generat Syst STE, Chatou, France
[4] Politecn Milan, Dept Energy, I-20133 Milan, Italy
关键词
Probabilistic support vector machine; Condition monitoring; Nuclear power plant; Point prediction; THINNED PIPE BENDS; FAULT-DIAGNOSIS; STEAM-GENERATOR; HTGR COMPONENTS; REGRESSION; CLASSIFICATION; SYSTEM; MODEL;
D O I
10.1016/j.anucene.2013.01.005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP) components is proposed, for the purposes of condition monitoring. It builds on a modified version of the Probabilistic Support Vector Regression (PSVR) method, which is based on the Bayesian probabilistic paradigm with a Gaussian prior. Specific techniques are introduced for the tuning of the PSVR hyerparameters, the model identification and the uncertainty analysis. A real case study is considered, regarding the prediction of a drifting process parameter of a NPP component. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 55 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] [Anonymous], 2004, Introduction to Machine Learning
  • [3] [Anonymous], 1977, Solution of illposed problems
  • [4] [Anonymous], 1995, MACHINE LEARNING
  • [5] Calculation of the power peaking factor in a nuclear reactor using support vector regression models
    Bae, In Ho
    Na, Man Gyun
    Lee, Yoon Joon
    Park, Goon Cherl
    [J]. ANNALS OF NUCLEAR ENERGY, 2008, 35 (12) : 2200 - 2205
  • [6] Baraldi P., 2010, NPIC HMIT 2010 LAS V
  • [7] Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components
    Baraldi, Piero
    Canesi, Roberto
    Zio, Enrico
    Seraoui, Redouane
    Chevalier, Roger
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2011, 18 (03) : 221 - 234
  • [8] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [9] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [10] Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon
    Cai, Jiejin
    [J]. ANNALS OF NUCLEAR ENERGY, 2012, 43 : 114 - 122