System for Automatic Camera Calibration Robust Against Blur and Lighting Conditions Changes

被引:0
作者
Pastarmov, Yulian [1 ,2 ]
机构
[1] Google, Munich, Germany
[2] St Cyril & St Methodius Univ Veliko Tarnovo, Comp Syst & Technol Dept, Veliko Tarnovo, Bulgaria
来源
COMPUTER SYSTEMS AND TECHNOLOGIES, COMPSYSTECH'16 | 2016年
关键词
Camera Calibration; Intrinsic Camera Models; Monocular and Stereo Computer Vision;
D O I
10.1145/2983468.2983522
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a system for precise intrinsic and extrinsic camera calibration for monocular and stereo cameras. The presented approach is based on some well established research in the field and utilizes calibration patterns. The novelty of the presented method is the automatic detection of motion blur, that is common to the process of calibration based on moving the camera or the calibration object, especially under bad lighting conditions. The method allows for sub-pixel re-projection precision for cameras with perspective lenses and can be extended to omnidirectional cameras as well.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 1981, COMMUNICATIONS ACM
[2]  
[Anonymous], 2001, Robotica, DOI DOI 10.1017/S0263574700223217
[3]  
[Anonymous], 2013, P IEEE RSJ INT C INT
[4]  
Bao Q., 2008, BLUR METRIC IMPLEMEN
[5]  
Crete-Roffet F., 2007, P SPIE INT SOC OPTIC
[6]  
Datta A., 2009, IEEE 12 ICCV COMP VI
[7]  
Devernay F, 2001, MACH VISION APPL, V13, P14, DOI 10.1007/PL00013269
[8]  
MathWorks, EST GEOM PAR SINGL C
[9]   MLESAC: A new robust estimator with application to estimating image geometry [J].
Torr, PHS ;
Zisserman, A .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2000, 78 (01) :138-156
[10]  
Yao Y., 2006, EVALUATION SHARPNESS