Rewiring networks for synchronization

被引:56
作者
Hagberg, Aric [1 ]
Schult, Daniel A. [2 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Colgate Univ, Dept Math, Hamilton, NY 13346 USA
关键词
D O I
10.1063/1.2975842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the synchronization of identical oscillators diffusively coupled through a network and examine how adding, removing, and moving single edges affects the ability of the network to synchronize. We present algorithms which use methods based on node degrees and based on spectral properties of the network Laplacian for choosing edges that most impact synchronization. We show that rewiring based on the network Laplacian eigenvectors is more effective at enabling synchronization than methods based on node degree for many standard network models. We find an algebraic relationship between the eigenstructure before and after adding an edge and describe an efficient algorithm for computing Laplacian eigenvalues and eigenvectors that uses the network or its complement depending on which is more sparse. (C) 2008 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 38 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   The fundamental organization of cardiac mitochondria as a network of coupled oscillators [J].
Aon, Miguel Antonio ;
Cortassa, Sonia ;
O'Rourke, Brian .
BIOPHYSICAL JOURNAL, 2006, 91 (11) :4317-4327
[3]   Network synchronization: Spectral versus statistical properties [J].
Atay, Fatihcan M. ;
Biyikoglu, Tuerker ;
Jost, Juergen .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 224 (1-2) :35-41
[4]   Graph operations and synchronization of complex networks [J].
Atay, FM ;
Biyikoglu, T .
PHYSICAL REVIEW E, 2005, 72 (01)
[5]   Synchronization of networks with prescribed degree distributions [J].
Atay, FM ;
Biyikoglu, T ;
Jost, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (01) :92-98
[6]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]  
Cvetkovic D., 2005, GRAPH THEORY COMBINA, V131, P85
[9]   Entangled networks, synchronization, and optimal network topology -: art. no. 188701 [J].
Donetti, L ;
Hurtado, PI ;
Muñoz, MA .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[10]   Coherence and conservation [J].
Earn, DJD ;
Levin, SA ;
Rohani, P .
SCIENCE, 2000, 290 (5495) :1360-1364