The threshold effects for the two-particle hamiltonians on lattices

被引:72
作者
Albeverio, S [1 ]
Lakaev, SN
Makarov, KA
Muminov, ZI
机构
[1] Univ Bonn, Inst Angew Math, Bonn, Germany
[2] BiBoS, Bielefeld, Germany
[3] Acad Sci Uzbek, Samarkand Div, Tashkent, Uzbekistan
[4] Univ Missouri, Dept Math, Columbus, MO USA
[5] Samara State Univ, Samarkand, Uzbekistan
关键词
D O I
10.1007/s00220-005-1454-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a wide class of two-body energy operators h(k) on the d-dimensional lattice Z(d), d >= 3, k being the two-particle quasi-momentum, we prove that if the following two assumptions (i) and (ii) are satisfied, then for all nontrivial values k, k not equal 0, the discrete spectrum of h(k) below its threshold is non-empty. The assumptions are: (i) the two-particle Hamiltonian h(0) corresponding to the zero value of the quasi-momentum has either an eigenvalue or a virtual level at the bottom of its essential spectrum and ( ii) the one-particle free Hamiltonians in the coordinate representation generate positivity preserving semi-groups.
引用
收藏
页码:91 / 115
页数:25
相关论文
共 29 条
[1]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/s00023-004-0181-9, 10.1007/S00023-004-0181-9]
[2]   A CLASS OF EXACTLY SOLVABLE 3-BODY QUANTUM-MECHANICAL PROBLEMS AND THE UNIVERSAL LOW-ENERGY BEHAVIOR [J].
ALBEVERIO, S ;
HOEGHKROHN, R ;
WU, TT .
PHYSICS LETTERS A, 1981, 83 (03) :105-109
[3]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[4]  
[Anonymous], ANN I H POINCARE
[5]  
[Anonymous], J SOV MATH
[6]  
[Anonymous], MATH USSR SB
[7]  
Berg C., 1984, HARMONIC ANAL SEMIGR
[8]  
Carmona R., 1990, Spectral Theory of Random Schrodinger Operators, Probability and its Applications
[9]   Energy-momentum spectrum of some two-particle lattice Schrodinger Hamiltonians [J].
da Veiga, PAF ;
Ioriatti, L ;
O'Carroll, M .
PHYSICAL REVIEW E, 2002, 66 (01)
[10]  
Graf GM, 1997, ANN I H POINCARE-PHY, V67, P91