Topological optimality condition for the identification of the center of an inhomogeneity

被引:20
作者
Cakoni, Fioralba [1 ]
Kovtunenko, Victor A. [2 ,3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Graz Univ, NAWI Graz, Dept Math, Heinrichstr 36, A-8010 Graz, Austria
[3] Russian Acad Sci, Siberian Div, Lavrentev Inst Hydrodynam, Novosibirsk 630090, Russia
基金
奥地利科学基金会;
关键词
inverse problem for inhomogeneous media; topology optimization; topological derivative; zero-order optimality condition; asymptotic analysis; SHAPE OPTIMIZATION; HELMHOLTZ-EQUATION;
D O I
10.1088/1361-6420/aaa997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse scattering problem for inhomogeneous media is considered within the topology optimization framework. Varying the complex-valued refractive index we derive a zero-order necessary optimality condition in minimizing the L2 misfit cost functional of the far-field measurement. The topology asymptotic expansion of the optimality condition leads to an imaging operator, which is used to identify the center of the unknown inhomogeneity using few farfield measurements. Numerical tests show high precision and stability in the reconstruction using our optimality condition based imaging both in two and three dimensions.
引用
收藏
页数:16
相关论文
共 44 条
[1]   Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency [J].
Ammari, H ;
Iakovleva, E ;
Moskow, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (04) :882-900
[2]  
Ammari H., 2004, RECONSTRUCTION SMALL
[3]  
Amstutz S, 2006, ASYMPTOTIC ANAL, V49, P87
[4]  
[Anonymous], 2000, ASYMPTOTIC THEORY EL
[5]   MUSIC FOR EXTENDED SCATTERERS AS AN INSTANCE OF THE FACTORIZATION METHOD [J].
Arens, Tilo ;
Lechleiter, Armin ;
Luke, D. Russell .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (04) :1283-1304
[6]   Acoustic inverse scattering using topological derivative of far-field measurements-based L2 cost functionals [J].
Bellis, Cedric ;
Bonnet, Marc ;
Cakoni, Fioralba .
INVERSE PROBLEMS, 2013, 29 (07)
[7]   Inverse acoustic scattering by small-obstacle expansion of a misfit function [J].
Bonnet, Marc .
INVERSE PROBLEMS, 2008, 24 (03)
[8]   Higher-order topological sensitivity for 2-D potential problems. Application to fast identification of inclusions [J].
Bonnet, Marc .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (11-12) :2275-2292
[9]   A direct impedance tomography algorithm for locating small inhomogeneities [J].
Brühl, M ;
Hanke, M ;
Vogelius, MS .
NUMERISCHE MATHEMATIK, 2003, 93 (04) :635-654
[10]  
Cakoni F, 2016, CBMS REGIONAL C SERI, V88