Implicitly restarted Arnoldi methods and subspace iteration

被引:66
作者
Lehoucq, RB [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
simultaneous iteration; Arnoldi reduction; Schur decomposition; restarting; eigenvalues;
D O I
10.1137/S0895479899358595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This goal of this paper is to present an elegant relationship between an implicitly restarted Arnoldi method (IRAM) and nonstationary (subspace) simultaneous iteration. This relationship allows the geometric convergence theory developed for nonstationary simultaneous iteration due to Watkins and Elsner [Linear Algebra Appl., 143 (1991), pp. 19-47] to be used for analyzing the rate of convergence of an IRAM. We also comment on the relationship with other restarting schemes. A set of experiments demonstrates that implicit restarted methods can converge at a much faster rate than simultaneous iteration when iterating on a subspace of equal dimension.
引用
收藏
页码:551 / 562
页数:12
相关论文
共 42 条
[1]  
Anderson E., 1995, LAPACK USERS GUIDE
[2]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[4]   Iterative methods for the computation of a few eigenvalues of a large symmetric matrix [J].
Baglama, J ;
Calvetti, D ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 1996, 36 (03) :400-421
[5]   Computation of a few small eigenvalues of a large matrix with application to liquid crystal modeling [J].
Baglama, J ;
Calvetti, D ;
Reichel, L ;
Ruttan, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :203-226
[6]  
BAGLAMA J., 1998, ELECTRON T NUMER ANA, V7, P124
[7]   Algorithm 776: SRRIT: A Fortran subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix [J].
Bai, Z ;
Stewart, GW .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (04) :494-513
[8]  
BAUER FL, 1957, Z ANGEW MATH PHYS, V8, P214, DOI DOI 10.1007/BF01600502
[9]  
Chatelin F., 1993, EIGENVALUES MATRICES
[10]   COMPUTING SELECTED EIGENVALUES OF SPARSE UNSYMMETRIC MATRICES USING SUBSPACE ITERATION [J].
DUFF, IS ;
SCOTT, JA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1993, 19 (02) :137-159