Effects of surface potentials on Goos-Hanchen and Imbert-Fedorov shifts in Weyl semimetals

被引:8
作者
Dongre, Ninad Kailas [1 ]
Roychowdhury, Krishanu [2 ,3 ]
机构
[1] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
[2] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
基金
瑞典研究理事会;
关键词
TOTAL-REFLECTION; GRAPHENE; LIGHT; PLASMON; PHASE; BEAMS;
D O I
10.1103/PhysRevB.106.075414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Weyl semimetals exhibit a myriad of exotic transport responses, among which, the Goos-Hanchen (GH) and Imbert-Fedorov (IF) effects have recently garnered substantial attention. Besides the usual parametric dependence inherited from the underlying Hamiltonian to describe a Weyl system, the IF shift particularly carries a topological identity-it depends on the chirality of the Weyl cones. Observing such signatures following the trail of theoretical predictions applied to clean systems can be severely obfuscated by surface potentials induced by localized impurities that are naturally present in real materials hosting the semimetallic phase. Classifying these potentials, we study their effects on GH and IF shifts to provide useful guidance to experiments that are tuned to the objective of characterizing Weyl semimetals and leveraging them to provide the basis for future technological advances. A transfer matrix-based approach is proposed to study the profile of Weyl wave functions scattering from the impurity potentials. As we unfold, the presence of such potentials can lead to several remarkable effects such as the complete nullification of the IF shift and valley inversion.
引用
收藏
页数:11
相关论文
共 70 条
[1]   Spin Berry phase in a helical edge state: Sz nonconservation and transport signatures [J].
Adak, Vivekananda ;
Roychowdhury, Krishanu ;
Das, Sourin .
PHYSICAL REVIEW B, 2020, 102 (03)
[2]   *BERECHNUNG DER SEITENVERSETZUNG DES TOTALREFLEKTIERTEN STRAHLES [J].
ARTMANN, K .
ANNALEN DER PHYSIK, 1948, 2 (1-2) :87-102
[3]   Quantum Goos-Hanchen Effect in Graphene [J].
Beenakker, C. W. J. ;
Sepkhanov, R. A. ;
Akhmerov, A. R. ;
Tworzydlo, J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (14)
[4]   Goos-Hanchen shift in negatively refractive media [J].
Berman, PR .
PHYSICAL REVIEW E, 2002, 66 (06) :3-067603
[5]   Measurement of positive and negative Goos-Hanchen effects for metallic gratings near Wood anomalies [J].
Bonnet, C ;
Chauvat, D ;
Emile, O ;
Bretenaker, F ;
Le Floch, A ;
Dutriaux, L .
OPTICS LETTERS, 2001, 26 (10) :666-668
[6]   DIRECT MEASUREMENT OF THE OPTICAL GOOS-HANCHEN EFFECT IN LASERS [J].
BRETENAKER, F ;
LEFLOCH, A ;
DUTRIAUX, L .
PHYSICAL REVIEW LETTERS, 1992, 68 (07) :931-933
[7]   PROPER TREATMENT OF THE DELTA-FUNCTION POTENTIAL IN THE ONE-DIMENSIONAL DIRAC-EQUATION [J].
CALKIN, MG ;
KIANG, D ;
NOGAMI, Y .
AMERICAN JOURNAL OF PHYSICS, 1987, 55 (08) :737-739
[8]   Fermi-Arc-Induced Vortex Structure in Weyl Beam Shifts [J].
Chattopadhyay, Udvas ;
Shi, Li-kun ;
Zhang, Baile ;
Song, Justin C. W. ;
Chong, Y. D. .
PHYSICAL REVIEW LETTERS, 2019, 122 (06)
[9]   Goos-Hanchen-like shifts for Dirac fermions in monolayer graphene barrier [J].
Chen, X. ;
Tao, J. -W. ;
Ban, Y. .
EUROPEAN PHYSICAL JOURNAL B, 2011, 79 (02) :203-208
[10]   Electronic analogy of the Goos-Hanchen effect: a review [J].
Chen, Xi ;
Lu, Xiao-Jing ;
Ban, Yue ;
Li, Chun-Fang .
JOURNAL OF OPTICS, 2013, 15 (03)