Chirplet transform for ultrasonic signal analysis and NDE applications

被引:0
作者
Lu, Y [1 ]
Demirli, R [1 ]
Cardoso, G [1 ]
Saniie, J [1 ]
机构
[1] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
来源
2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 | 2005年
关键词
chirplet; time-frequency; parameter estimation;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this investigation, the chirplet transform is introduced as a means to obtain not only time-frequency representation, but also to estimate the echo amplitude, time of arrival, center frequency, bandwidth, phase, and chirp rate of multiple interfering ultrasonic echoes. This transformation can be used for signal decomposition and successive parameter estimation of multiple interfering echoes. It has been shown that by using both simulated chirp signals and the ultrasonic experimental data, the chirplet signal decomposition algorithm performs robustly, yields accurate echo estimation and results in SNR enhancements. Numerical and analytical results show that the algorithm is efficient and successful in precise signal representation. This type of study addresses a broad range of applications including flaw detection, deconvolution, object classification, velocity measurement, and ranging systems.
引用
收藏
页码:536 / 539
页数:4
相关论文
共 8 条
[1]   Ultrasonic data compression via parameter estimation [J].
Cardoso, G ;
Saniie, J .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (02) :313-325
[2]   Model-based estimation of ultrasonic echoes part II: Nondestructive evaluation applications [J].
Demirli, R ;
Saniie, J .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2001, 48 (03) :803-811
[3]   Model-based estimation of ultrasonic echoes part I: Analysis and algorithms [J].
Demirli, R ;
Saniie, J .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2001, 48 (03) :787-802
[4]  
FENG A, 2001, IEEE ISCAS, V2, P6
[5]   THE CHIRPLET TRANSFORM - PHYSICAL CONSIDERATIONS [J].
MANN, S ;
HAYKIN, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (11) :2745-2761
[6]  
MANN S, 1992, IEEE ICASSP, V1, P417
[7]   SIGNAL REPRESENTATION USING ADAPTIVE NORMALIZED GAUSSIAN FUNCTIONS [J].
QIAN, S ;
CHEN, DP .
SIGNAL PROCESSING, 1994, 36 (01) :1-11
[8]  
QIAN S, 1998, IEEE ICASSP, V1, P1781