Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity

被引:19
作者
Sun, Ying [1 ]
Gao, Yuelin [2 ]
Shi, Xudong [3 ]
机构
[1] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Anhui, Peoples R China
[2] North Minzu Univ, Ningxia Prov Key Lab Intelligent Informat & Data, Yinchuan 750021, Peoples R China
[3] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-objective optimal problem; particle swarm optimization; clone immunity; chaotic sequence; GENETIC ALGORITHM;
D O I
10.3390/math7020146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is generally known that the balance between convergence and diversity is a key issue for solving multi-objective optimization problems. Thus, a chaotic multi-objective particle swarm optimization approach incorporating clone immunity (CICMOPSO) is proposed in this paper. First, points in a non-dominated solution set are mapped to a parallel-cell coordinate system. Then, the status of the particles is evaluated by the Pareto entropy and difference entropy. At the same time, the algorithm parameters are adjusted by feedback information. At the late stage of the algorithm, the local-search ability of the particle swarm still needs to be improved. Logistic mapping and the neighboring immune operator are used to maintain and change the external archive. Experimental test results show that the convergence and diversity of the algorithm are improved.
引用
收藏
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 2018, SWARM EVOL COMPUT, DOI DOI 10.1016/j.swevo.2018.02.021
[2]  
[Anonymous], 2001, SPEA2 IMPROVING STRE, DOI DOI 10.3929/ETHZ-A-004284029
[3]   Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN-PSO [J].
Bendu, Harisankar ;
Deepak, B. B. V. L. ;
Murugan, S. .
APPLIED ENERGY, 2017, 187 :601-611
[4]  
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
[5]   Cultural-Based Multiobjective Particle Swarm Optimization [J].
Daneshyari, Moayed ;
Yen, Gary G. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (02) :553-567
[6]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
[7]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[8]  
Eberhart R, 1995, A new optimizer using particle swarm theory, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/mhs.1995.494215]
[9]   Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search [J].
Emary, E. ;
Zawbaa, Hossam M. ;
Hassanien, Aboul Ella ;
Parv, B. .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2017, 11 (03) :611-627
[10]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968