Understanding anomalous current-voltage characteristics in microchannel-nanochannel interconnect devices

被引:23
作者
Nandigana, Vishal V. R. [1 ]
Aluru, N. R. [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Mech Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Micro-nanochannel; Concentration polarization; Space charge redistribution; Overlimiting current; AC/DC field; Current rectification; NANOFLUIDIC CHANNELS; CONCENTRATION POLARIZATION; TRANSPORT; MEMBRANES; MODEL;
D O I
10.1016/j.jcis.2012.06.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of a microchannel with a nanochannel is known to exhibit anomalous nonlinear current-voltage characteristics. In this paper, we perform detailed numerical simulations considering a 2-D nonlinear ion transport model, to capture and explain the underlying physics behind the limiting resistance and the overlimiting current regions, observed predominantly in a highly ion-selective nanochannel. We attribute the overlimiting current characteristics to the redistribution of the space charges resulting in an anomalous enhancement in the ionic concentration of the electrolyte in the induced space charge region, beyond a critical voltage. The overlimiting current with constant conductivity is predicted even without considering the effects of fluidic nonlinearities. We extend our study and report anomalous rectification effects, resulting in an enhancement of current in the non-ohmic region, under the application of combined AC and DC electric fields. The necessary criteria to observe these enhancements and some useful scaling relations are discussed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 171
页数:10
相关论文
共 34 条
[1]   Electrokinetic energy conversion in micrometer-length nanofluidic channels [J].
Chang, Chih-Chang ;
Yang, Ruey-Jen .
MICROFLUIDICS AND NANOFLUIDICS, 2010, 9 (2-3) :225-241
[2]   Electrokinetic flow-induced currents in silica nanofluidic channels [J].
Choi, Yong Seok ;
Kim, Sung Jin .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 333 (02) :672-678
[3]   Electrochemomechanical energy conversion in nanofluidic channels [J].
Daiguji, H ;
Yang, PD ;
Szeri, AJ ;
Majumdar, A .
NANO LETTERS, 2004, 4 (12) :2315-2321
[4]   Ion transport in nanofluidic channels [J].
Daiguji, H ;
Yang, PD ;
Majumdar, A .
NANO LETTERS, 2004, 4 (01) :137-142
[5]   Electrokinetic molecular separation in nanoscale fluidic channels [J].
Garcia, AL ;
Ista, LK ;
Petsev, DN ;
O'Brien, MJ ;
Bisong, P ;
Mammoli, AA ;
Brueck, SRJ ;
López, GP .
LAB ON A CHIP, 2005, 5 (11) :1271-1276
[6]   MEMBRANE TRANSPORT CHARACTERISTIC OF ULTRAFINE CAPILLARIES [J].
GROSS, RJ ;
OSTERLE, JF .
JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (01) :228-&
[7]   Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements [J].
Hibara, A ;
Saito, T ;
Kim, HB ;
Tokeshi, M ;
Ooi, T ;
Nakao, M ;
Kitamori, T .
ANALYTICAL CHEMISTRY, 2002, 74 (24) :6170-6176
[8]  
Hille B., 2001, Ion Channels of Excitable Membranes, V3rd
[9]   Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules [J].
Hoang, H. T. ;
Tong, H. D. ;
Segers-Nolten, I. M. ;
Tas, N. R. ;
Subramaniam, V. ;
Elwenspoek, M. C. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 367 :455-459
[10]   Ionic conductance of nanopores in microscale analysis systems:: Where microfluldics meets nanofluidics [J].
Hoeltzel, Alexandra ;
Tallarek, Ulrich .
JOURNAL OF SEPARATION SCIENCE, 2007, 30 (10) :1398-1419