Phase locking and rotational motion of a parametric pendulum in noisy and chaotic conditions

被引:20
作者
Litak, Grzegorz [1 ,2 ]
Borowiec, Marek [1 ]
Wiercigroch, Marian [3 ]
机构
[1] Tech Univ Lublin, Dept Appl Mech, PL-20618 Lublin, Poland
[2] Tech Univ Chemnitz, Inst Phys, D-09111 Chemnitz, Germany
[3] Univ Aberdeen, Kings Coll, Sch Engn, Ctr Appl Dynam Res, Aberdeen, Scotland
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2008年 / 23卷 / 03期
关键词
chaotic vibration; parametric pendulum; rotational mode; noise;
D O I
10.1080/14689360802010428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The effect of noise on the rotational mode of a pendulum which is excited kinematically in vertical direction has been analysed. We have shown that for weak noise, transitions from the oscillations to rotations and vice versa are possible. For stronger noise, the rotational solution as an independent synchronized mode vanishes. When searching for the rotational motion we observed an intermittent transition to chaos induced by noise.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 2019, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
[2]  
BAKER GL, 1996, CHAOTIC DYNAMICS INT
[3]  
Bardin BS, 1995, PMM-J APPL MATH MEC+, V59, P879, DOI 10.1016/0021-8928(95)00121-2
[4]   Zones of chaotic behaviour in the parametrically excited pendulum [J].
Bishop, SR ;
Clifford, MJ .
JOURNAL OF SOUND AND VIBRATION, 1996, 189 (01) :142-147
[5]   Noise activated transitions among periodic states of a pendulum with a vertically oscillating pivot, mediated by a chaotic attractor [J].
Blackburn, JA .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2067) :1043-1052
[6]  
BOROWIEC M, 2006, P APPL MATH MECH, V6, P291
[7]   A THEORETICAL PREDICTION OF THE THRESHOLD FOR CHAOS IN A JOSEPHSON JUNCTION [J].
CICOGNA, G .
PHYSICS LETTERS A, 1987, 121 (8-9) :403-406
[8]  
FALZARANO J, 1991, BIFURCATION CHAOS AN, V97, P117
[9]  
KANTZ H, 1997, NONLINEAR TIME SERIE
[10]  
Kapitaniak T., 1990, CHAOS SYSTEMS NOISE