Radix expansions and connectedness of planar self-affine fractals

被引:2
作者
Wang, Lian [1 ]
Leung, King-Shun [2 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, Hong Kong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 193卷 / 03期
关键词
Self-affine set; Connectedness; Radix expansion; Neighbor-generating scheme; TILES;
D O I
10.1007/s00605-020-01461-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an expanding matrix with characteristic polynomial f (x) = x(2) + px + 3 and D = {0, v, lv + kAv} be a digit set where l, k is an element of Z, v is an element of R-2 so that {v, Av} is linearly independent. It is well known that there exists a unique self-affine fractal T satisfying AT = T + D. In this paper, we give a complete characterization for the connectedness of T by using radix expansion.
引用
收藏
页码:705 / 724
页数:20
相关论文
共 18 条
  • [1] A survey on topological properties of tiles related to number systems
    Akiyama, S
    Thuswaldner, JM
    [J]. GEOMETRIAE DEDICATA, 2004, 109 (01) : 89 - 105
  • [2] [Anonymous], 1994, J. Fourier Anal. Appl.
  • [3] [Anonymous], 1985, Japan J. Appl. Math., DOI 10.1007/BF03167083
  • [4] Disk-like self-affine tiles in R2
    Bandt, C
    Wang, Y
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (04) : 591 - 601
  • [5] CLASSIFICATION OF SELF-AFFINE LATTICE TILINGS
    BANDT, C
    GELBRITCH, G
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 : 581 - 593
  • [6] Self-affine manifolds
    Conner, Gregory R.
    Thuswaldner, Joerg M.
    [J]. ADVANCES IN MATHEMATICS, 2016, 289 : 725 - 783
  • [7] TOPOLOGICAL PROPERTIES OF A CLASS OF SELF-AFFINE TILES IN R3
    Deng, Guotai
    Liu, Chuntai
    Ngai, Sze-Man
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (02) : 1321 - 1350
  • [8] Connectedness of a class of planar self-affine tiles
    Deng, Qi-Rong
    Lau, Ka-sing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 493 - 500
  • [9] Falconer K., 2004, FRACTAL GEOMETRY MAT
  • [10] Hacon D., 1994, EXP MATH, V3, P317