Modified block SSOR preconditioners for symmetric positive definite linear systems

被引:41
作者
Bai, ZZ [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
关键词
symmetric positive definite linear system; block SSOR iteration; preconditioner; hierarchical basis discretization;
D O I
10.1023/A:1012915424955
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A class of modified block SSOR preconditioners is presented for the symmetric positive definite systems of linear equations, whose coefficient matrices come from the hierarchical-basis finite-element discretizations of the second-order self-adjoint elliptic boundary value problems. These preconditioners include a block SSOR iteration preconditioner, and two inexact block SSOR iteration preconditioners whose diagonal matrices except for the (1,1)-block are approximated by either point symmetric Gauss-Seidel iterations or incomplete Cholesky factorizations, respectively, The optimal relaxation factors involved in these preconditioners and the corresponding optimal condition numbers are estimated: in details through two different approaches used by Bank, Dupont and Yserentant (Numer. Math. 52 (1988) 427-458) and Axelsson (Iterative Solution Methods (Cambridge University Press, 1994)), Theoretical analyses show that these modified block SSOR preconditioners. are very robust, have nearly optimal convergence rates, and especially, are well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.
引用
收藏
页码:263 / 282
页数:20
相关论文
共 17 条
[1]  
[Anonymous], 2012, APPL ITERATIVE METHO
[2]  
Axelsson O., 1972, BIT (Nordisk Tidskrift for Informationsbehandling), V12, P443, DOI 10.1007/BF01932955
[3]  
Axelsson O., 1976, Computer Methods in Applied Mechanics and Engineering, V9, P123, DOI 10.1016/0045-7825(76)90056-6
[4]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[5]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[6]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[7]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[8]  
BANK RE, 1980, CNA159 U TX AUST
[9]   THE CONTRACTION NUMBER OF A MULTIGRID METHOD FOR SOLVING THE POISSON EQUATION [J].
BRAESS, D .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :387-404
[10]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0