Levers for Thermoelectric Properties in Titania-Based Ceramics

被引:37
|
作者
Backhaus-Ricoult, Monika [1 ]
Rustad, James R. [1 ]
Vargheese, Deenamma [1 ]
Dutta, Indrajit [1 ]
Work, Kim [1 ]
机构
[1] Corning Inc, Corning, NY 14831 USA
关键词
Titania; thermoelectrics; Magneli phases;
D O I
10.1007/s11664-012-2019-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While the beneficial impact of nanostructural engineering on thermoelectric performance has been demonstrated for many semiconducting materials (SiGe, skutterudites, PbTe2, etc.), no significant advantages have been reported for oxide nanomaterials. In this study, titania is used as a model material to compare the impact of grain size, doping and substitution, second-phase nanodispersion, and crystallographic defects on the electronic and thermal properties. It is shown that the lattice thermal conductivity can be most efficiently reduced by high densities of crystallographic planar defects in the Magn,li phases, while modification of grain size or introduction of second phases on length scales of 20 nm to 100 nm introduces only minor improvement. For the electronic properties, donor dopants such as niobium provide improvement of the power factor, but are not able to compete with the enhanced carrier concentration that is reached through oxygen vacancy introduction.
引用
收藏
页码:1636 / 1647
页数:12
相关论文
共 50 条
  • [1] Levers for Thermoelectric Properties in Titania-Based Ceramics
    Monika Backhaus-Ricoult
    James R. Rustad
    Deenamma Vargheese
    Indrajit Dutta
    Kim Work
    Journal of Electronic Materials, 2012, 41 : 1636 - 1647
  • [2] Mechanical and electrical properties of superplastically foamed titania-based ceramics
    Kishimoto, Akira
    Obata, Mako
    Waku, Kiminori
    Hayashi, Hidetaka
    CERAMICS INTERNATIONAL, 2009, 35 (04) : 1441 - 1445
  • [3] BEHAVIOR OF TITANIUM AND TITANIA-BASED CERAMICS INVITRO AND INVIVO
    LI, JG
    BIOMATERIALS, 1993, 14 (03) : 229 - 232
  • [4] Titania-based aerogels
    Schneider, M
    Baiker, A
    CATALYSIS TODAY, 1997, 35 (03) : 339 - 365
  • [5] Titania-based bioactive materials
    Kokubo, T.
    Matsushita, T.
    Takadama, H.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) : 1553 - 1553
  • [6] Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties
    Papadopoulou-Fermeli, Nefeli
    Lagopati, Nefeli
    Pippa, Natassa
    Sakellis, Elias
    Boukos, Nikos
    Gorgoulis, Vassilis G.
    Gazouli, Maria
    Pavlatou, Evangelia A.
    PHARMACEUTICS, 2023, 15 (01)
  • [7] A New η-Titania-Based Photocatalyst
    Savinkina, E. V.
    Obolenskaya, L. N.
    Kuz'micheva, G. M.
    Dorokhov, A. V.
    Tsivadze, A. Yu.
    DOKLADY PHYSICAL CHEMISTRY, 2011, 441 : 224 - 226
  • [8] A new η-titania-based photocatalyst
    E. V. Savinkina
    L. N. Obolenskaya
    G. M. Kuz’micheva
    A. V. Dorokhov
    A. Yu. Tsivadze
    Doklady Physical Chemistry, 2011, 441 : 224 - 226
  • [9] Biomimetic and bioinspired synthesis of titania and titania-based materials
    Tong, Zhenwei
    Jiang, Yanjun
    Yang, Dong
    Shi, Jiafu
    Zhang, Shaohua
    Liu, Chuang
    Jiang, Zhongyi
    RSC ADVANCES, 2014, 4 (24): : 12388 - 12403
  • [10] Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties
    Djafer, Lahcene
    Ayral, Andre
    Ouagued, Abdallah
    SEPARATION AND PURIFICATION TECHNOLOGY, 2010, 75 (02) : 198 - 203