ON STAR, SHARP, CORE, AND MINUS PARTIAL ORDERS IN RICKART RINGS

被引:11
作者
Marovt, Janko [1 ]
机构
[1] Univ Maribor, Fac Econ & Business, Razlagova 14, SI-2000 Maribor, Slovenia
关键词
star partial order; sharp partial order; core partial order; bounded linear operator; Rickart ring; B(H);
D O I
10.1215/17358787-3607090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a Rickart *-ring and let <=*, <=(#), <=(circle plus) and <=(circle plus) denote the star, the sharp, the core, and the dual core partial orders in A, respectively. The sets of all b is an element of A such that a <= b, along with the sets of all b is an element of A such that b <= a, are characterized, where a is an element of A is given and where <= is one of the partial orders: <*, or <=(#) or <=(circle plus), or <=(circle plus). Such sets of elements that are above or below a given element under the minus partial order <=(-) in a Rickart ring A are also studied. Some recent results of Cvetkovie-Ilie et al. on partial orders in B(H), the algebra of all bounded linear operators on a Hilbert space H, are thus generalized.
引用
收藏
页码:495 / 508
页数:14
相关论文
共 17 条
[1]   Core inverse of matrices [J].
Baksalary, Oskar Maria ;
Trenkler, Goetz .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) :681-697
[2]  
Berberian SK, 1972, GRUNDLEHREN MATH WIS, V195
[3]   Partial orders on B(H) [J].
Cvetkovic-Ilic, Dragana S. ;
Mosic, Dijana ;
Wei, Yimin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 481 :115-130
[4]   Minus partial order in Rickart rings [J].
Djordjevic, Dragan S. ;
Rakic, Dragan S. ;
Marovt, Janko .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4) :291-305
[5]   Star partial order on B(H) [J].
Dolinar, Gregor ;
Marovt, Janko .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) :319-326
[6]   NATURAL STRUCTURES ON SEMIGROUPS WITH INVOLUTION [J].
DRAZIN, MP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (01) :139-141
[7]  
Gross J., 2006, LINEAR ALGEBRA APPL, V417, P87, DOI 10.1016/i.laa.2005.10.036
[8]  
Hartwig R.E., 1980, SCI MATH JPN, V25, P1
[9]   NOTE ON GROUP STRUCTURE OF UNIT REGULAR RING ELEMENTS [J].
HARTWIG, RE ;
LUH, J .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :449-461
[10]  
Kaplansky I., 1968, RINGS OPERATORS