Structural basis for phosphorylation-dependent signaling in the DNA-damage response

被引:25
作者
Williams, RS
Bernstein, N
Lee, MS
Rakovszky, ML
Cui, D
Green, R
Weinfeld, M
Glover, JNM [1 ]
机构
[1] Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada
[2] Univ Alberta, Cross Canc Inst, Edmonton, AB T6G 1Z2, Canada
[3] Univ Alberta, Dept Oncol, Edmonton, AB T6G 1Z2, Canada
关键词
BRCA1; BRCT; PNK; FHA; polynucleotide kinase; breast cancer; phosphopeptide-protein interactions; DNA damage response;
D O I
10.1139/O05-153
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The response of eukaryotic cells to DNA damage requires a multitude of protein-protein interactions that mediate the ordered repair of the damage and the arrest of the cell cycle until repair is complete. Two conserved protein modules, BRCT and forkhead-associated (FHA) domains, play key roles in the DNA-damage response as recognition elements for nuclear Ser/Thr phosphorylation induced by DNA-damage-responsive kinases. BRCT domains, first identified at the C-terminus of BRCA1, often occur as multiple tandem repeats of individual BRCT modules. Our recent structural and functional work has revealed how BRCT repeats recognize phosphoserine protein targets. It has also revealed a secondary binding pocket at the interface between tandem repeats, which recognizes the amino-acid 3 residues C-terminal to the phosphoserine. We have also studied the molecular function of the FHA domain of the DNA repair enzyme, polynucleotide kinase (PNK). This domain interacts with threonine-phosphorylated XRCC1 and XRCC4, proteins responsible for the recruitment of PNK to sites of DNA-strand-break repair. Our studies have revealed a flexible mode of recognition that allows PNK to interact with numerous negatively charged substrates.
引用
收藏
页码:721 / 727
页数:7
相关论文
共 30 条
[1]   The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase [J].
Bernstein, NK ;
Williams, RS ;
Rakovszky, ML ;
Cui, D ;
Green, R ;
Karimi-Busheri, F ;
Mani, RS ;
Galicia, S ;
Koch, CA ;
Cass, CE ;
Durocher, D ;
Weinfeld, M ;
Glover, JNM .
MOLECULAR CELL, 2005, 17 (05) :657-670
[2]   A superfamily of conserved domains in DNA damage responsive cell cycle checkpoint proteins [J].
Bork, P ;
Hofmann, K ;
Bucher, P ;
Neuwald, AF ;
Altschul, SF ;
Koonin, EV .
FASEB JOURNAL, 1997, 11 (01) :68-76
[3]   From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair [J].
Callebaut, I ;
Mornon, JP .
FEBS LETTERS, 1997, 400 (01) :25-30
[4]   BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function [J].
Cantor, SB ;
Bell, DW ;
Ganesan, S ;
Kass, EM ;
Drapkin, R ;
Grossman, S ;
Wahrer, DCR ;
Sgroi, DC ;
Lane, WS ;
Haber, DA ;
Livingston, DM .
CELL, 2001, 105 (01) :149-160
[5]   Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining [J].
Chappell, C ;
Hanakahi, LA ;
Karimi-Busheri, F ;
Weinfeld, M ;
West, SC .
EMBO JOURNAL, 2002, 21 (11) :2827-2832
[6]   Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer [J].
Clapperton, JA ;
Manke, IA ;
Lowery, DM ;
Ho, T ;
Haire, LF ;
Yaffe, MB ;
Smerdon, SJ .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (06) :512-518
[7]   The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4 [J].
Clements, PM ;
Breslin, C ;
Deeks, ED ;
Byrd, PJ ;
Ju, LM ;
Bieganowski, P ;
Brenner, C ;
Moreira, MC ;
Taylor, AMR ;
Caldecott, KW .
DNA REPAIR, 2004, 3 (11) :1493-1502
[8]   The FHA domain [J].
Durocher, D ;
Jackson, SP .
FEBS LETTERS, 2002, 513 (01) :58-66
[9]   The molecular basis of FHA Domain:Phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms [J].
Durocher, D ;
Taylor, IA ;
Sarbassova, D ;
Haire, LF ;
Westcott, SL ;
Jackson, SP ;
Smerdon, SJ ;
Yaffe, MB .
MOLECULAR CELL, 2000, 6 (05) :1169-1182
[10]   BRCA1 MUTATIONS IN PRIMARY BREAST AND OVARIAN CARCINOMAS [J].
FUTREAL, PA ;
LIU, QY ;
SHATTUCKEIDENS, D ;
COCHRAN, C ;
HARSHMAN, K ;
TAVTIGIAN, S ;
BENNETT, LM ;
HAUGENSTRANO, A ;
SWENSEN, J ;
MIKI, Y ;
EDDINGTON, K ;
MCCLURE, M ;
FRYE, C ;
WEAVERFELDHAUS, J ;
DING, W ;
GHOLAMI, Z ;
SODERKVIST, P ;
TERRY, L ;
JHANWAR, S ;
BERCHUCK, A ;
IGLEHART, JD ;
MARKS, J ;
BALLINGER, DG ;
BARRETT, JC ;
SKOLNICK, MH ;
KAMB, A ;
WISEMAN, R .
SCIENCE, 1994, 266 (5182) :120-122