Segmenting Hemorrhagic and Ischemic Infarct Simultaneously From Follow-Up Non-Contrast CT Images in Patients With Acute Ischemic Stroke

被引:41
作者
Kuang, Hulin [1 ]
Menon, Buoy K. [1 ]
Qiu, Wu [1 ]
机构
[1] Univ Calgary, Dept Clin Neurosci, Calgary, AB T2N 4N1, Canada
基金
加拿大健康研究院;
关键词
Intracerebral hemorrhage; ischemic infarct; multi-region image segmentation; convex optimization; deep learning; non contrast CT; SUBARACHNOID HEMORRHAGE; INTRACRANIAL HEMORRHAGE; ENERGY MINIMIZATION; SEGMENTATION; INSIGHTS; THROMBECTOMY; VOLUMES; LESIONS;
D O I
10.1109/ACCESS.2019.2906605
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cerebral infarct volume (CIV) measured from follow-up non contrast CT (NCCT) scans of acute ischemic stroke (AIS) patients is an important radiologic outcome measure of the effectiveness of ischemic stroke treatment. Post-treatment CIV in NCCT of AIS patients typically includes ischemic infarct only. In around 10% of AIS patients, however, hemorrhagic transformation or frank hemorrhage occurs along with ischemic infarction. Manual segmentation used to segment CIV into these two components in clinical practice is tedious and user dependent. Although automated segmentation methods exist, they can only segment either hemorrhage or ischemic infarct alone. In order to measure post-treatment CIV more efficiently, a novel joint segmentation approach is proposed to segment ischemic and hemorrhage infarct simultaneously. The proposed method makes use of advances in deep learning and convex optimization techniques. Specifically, convolutional neural network learned semantic information, local image context, and high-level user initialized prior are integrated into a multi-region time-implicit contour evolution scheme, which can be globally optimized by convex relaxation. The proposed segmentation approach is quantitatively evaluated using 30 patient images using Dice similarity coefficient and the mean and maximum absolute surface distance, compared to the gold standard of manual segmentation. The results show that the proposed semi-automatic segmentation is accurate and robust, outperforming some state-of-the-art semi- and automatic segmentation approaches.
引用
收藏
页码:39842 / 39851
页数:10
相关论文
共 30 条
[1]   Posttreatment Infarct Volumes when Compared with 24-Hour and 90-Day Clinical Outcomes: Insights from the REVASCAT Randomized Controlled Trial [J].
Al-Ajlan, F. S. ;
Al Sultan, A. S. ;
Minhas, P. ;
Assis, Z. ;
de Miquel, M. A. ;
Millan, M. ;
San Roman, L. ;
Tomassello, A. ;
Demchuk, A. M. ;
Jovin, T. G. ;
Cuadras, P. ;
Davalos, A. ;
Goyal, M. ;
Menon, B. K. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (01) :107-110
[2]   Intra-Arterial Therapy and Post-Treatment Infarct Volumes Insights From the ESCAPE Randomized Controlled Trial [J].
Al-Ajlan, Fahad S. ;
Goyal, Mayank ;
Demchuk, Andrew M. ;
Minhas, Priyanka ;
Sabiq, Farahna ;
Assis, Zarina ;
Willinsky, Robert ;
Montanera, Walter J. ;
Rempel, Jeremy L. ;
Shuaib, Ashfaq ;
Thornton, John ;
Williams, David ;
Roy, Daniel ;
Poppe, Alexandre Y. ;
Jovin, Tudor G. ;
Sapkota, Biggya L. ;
Baxter, Blaise W. ;
Krings, Timo ;
Silver, Frank L. ;
Frei, Donald F. ;
Fanale, Christopher ;
Tampieri, Donatella ;
Teitelbaum, Jeanne ;
Lum, Cheemun ;
Dowlatshahi, Dar ;
Shankar, Jai J. ;
Barber, Philip A. ;
Hill, Michael D. ;
Menon, Bijoy K. .
STROKE, 2016, 47 (03) :777-781
[3]   Semi-automated method for brain hematoma and edema quantification using computed tomography [J].
Bardera, A. ;
Boada, I. ;
Feixas, M. ;
Remollo, S. ;
Blasco, G. ;
Silva, Y. ;
Pedraza, S. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (04) :304-311
[4]   Automatic Quantification of Subarachnoid Hemorrhage on Noncontrast CT [J].
Boers, A. M. ;
Zijistra, I. A. ;
Gathier, C. S. ;
van den Berg, R. ;
Slump, C. H. ;
Marquering, H. A. ;
Majoie, C. B. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (12) :2279-2286
[5]   Automated Cerebral Infarct Volume Measurement in Follow-up Noncontrast CT Scans of Patients with Acute Ischemic Stroke [J].
Boers, A. M. ;
Marquering, H. A. ;
Jochem, J. J. ;
Besselink, N. J. ;
Berkhemer, O. A. ;
van der Lugt, A. ;
Beenen, L. F. ;
Majoie, C. B. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (08) :1522-1527
[6]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[7]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[8]  
Boykov Y, 2006, LECT NOTES COMPUT SC, V3953, P409, DOI 10.1007/11744078_32
[9]   Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain [J].
Chan, Tao .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (4-5) :285-298
[10]   A method for automatic detection and classification of stroke from brain CT images [J].
Chawla, Mayank ;
Sharma, Saurabh ;
Sivaswamy, Jayanthi ;
Kishore, L. T. .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :3581-3584