Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries

被引:37
作者
Li, Shuli [1 ]
Chen, Chen [1 ]
Fu, Kun [1 ]
Xue, Leigang [1 ]
Zhao, Chengxin [2 ]
Zhang, Shu [1 ]
Hu, Yi [1 ,3 ]
Zhou, Lan [1 ,3 ]
Zhang, Xiangwu [1 ]
机构
[1] N Carolina State Univ, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
[2] Univ Oslo, Dept Phys, N-0316 Oslo, Norway
[3] Zhejiang Sci Tech Univ, Engn Res Ctr Ecodyeing & Finishing Text, Hangzhou 310018, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Silicon; Germanium; Tin; Composite nanofiber; Electrospinning; Lithium-ion battery; ELECTROSPUN CARBON NANOFIBERS; PERFORMANCE; NANOCOMPOSITE; NANOTUBES; CAPACITY;
D O I
10.1016/j.ssi.2013.10.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alloy anodes (Si, Ge and Sn) electrospun into carbon nanofibers as binder-free electrodes were synthesized and studied for rechargeable lithium-ion batteries. Alloy anode materials suffer from serious volume changes and nanoparticle aggregations during lithium insertion and extraction, resulting in rapid pulverization and capacity loss. Carbon nanofibers could help preserve the alloy anode materials during repeated cycling, and consequently maintain the cycling stability. In this work, it was found that with the increase in the amount of Si, Ge and Sn, the cycling stability was decreased due to the formation of large clusters within the carbon nanofiber matrix. Compared with Si/carbon nanofibers, Ge/carbon and Sn/carbon exhibited better cycling performance due to their improved nanopartide distribution and smaller volume changes. The failure mechanism of the Si/carbon structure was explained in this article. It is believed that this study on Si/carbon, Ge/carbon and Sn/carbon composite nanofiber electrodes could help in designing alloy-based carbon composites with various structures for advanced lithium-ion batteries. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 33 条
[1]   Electrospinning: designed architectures for energy conversion and storage devices [J].
Cavaliere, Sara ;
Subianto, Surya ;
Savych, Iuliia ;
Jones, Deborah J. ;
Roziere, Jacques .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :4761-4785
[2]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[3]   Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications [J].
Collins, George ;
Federici, John ;
Imura, Yuki ;
Catalani, Luiz H. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
[4]   A Germanium-Carbon Nanocomposite Material for Lithium Batteries [J].
Cui, Guanglei ;
Gu, Lin ;
Zhi, Linjie ;
Kaskhedikar, N. ;
van Aken, Peter A. ;
Muellen, Klaus ;
Maier, Joachim .
ADVANCED MATERIALS, 2008, 20 (16) :3079-3083
[5]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[6]   Electrospinning materials for energy-related applications and devices [J].
Dong, Zexuan ;
Kennedy, Scott J. ;
Wu, Yiquan .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4886-4904
[7]   Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :A698-A702
[8]   Nanostructured Co3O4 Materials: Synthesis, Characterization, and Electrochemical Behaviors as Anode Reactants in Rechargeable Lithium Ion Batteries [J].
Guo, Bing ;
Li, Chunsheng ;
Yuan, Zhong-Yong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) :12805-12817
[9]   Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J].
Hu, Yong-Sheng ;
Demir-Cakan, Rezan ;
Titirici, Maria-Magdalena ;
Mueller, Jens-Oliver ;
Schloegl, Robert ;
Antonietti, Markus ;
Maier, Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) :1645-1649
[10]   Lithium alloy negative electrodes [J].
Huggins, RA .
JOURNAL OF POWER SOURCES, 1999, 81 :13-19