A flexible class of parametric distributions for Bayesian linear mixed models

被引:19
作者
Maleki, Mohsen [1 ]
Wraith, Darren [2 ]
Arellano-Valle, Reinaldo B. [3 ]
机构
[1] Shiraz Univ, Dept Stat, Shiraz, Iran
[2] QUT, IHBI, Brisbane, Qld, Australia
[3] Univ Catolica Chile, Dept Stat, Santiago, Chile
关键词
Bayesian analysis; Linear mixed effect model; MCMC method; Unrestricted skew-normal generalized-hyperbolic distribution; Unrestricted skew-normal distribution; SCHIZOPHRENIA; INFERENCE;
D O I
10.1007/s11749-018-0590-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a linear mixed effect model (LMM) assuming that the random effect and error terms follow an unrestricted skew-normal generalized-hyperbolic (SUNGH) distribution. The SUNGH is a broad class of flexible distributions that includes various other well-known asymmetric and symmetric families and provides a high degree of flexibility for the modeling of complex multivariate data with different directions and degrees of asymmetry, kurtosis and heavy tails. The choice of the best fitting distribution can proceed quite naturally through parameter estimation or by placing constraints on specific parameters and assessing using model choice criteria. We estimate parameters of the LMM using a Bayesian approach and examine the performance of the proposed methodology on simulated and real data from a clinical trial on treatment options for schizophrenia (Lapierre et al. Acta Psychiatric Scandinavica 82:72-76, 1990; Ho and Lin Biom J 52(4):449-469, 2010).
引用
收藏
页码:543 / 564
页数:22
相关论文
共 60 条
[1]  
[Anonymous], 2017, STAN COR LIB VERS 2
[2]  
[Anonymous], 2017, R LANG ENV STAT COMP
[3]  
[Anonymous], 2001, BAYES EMPIRICAL BAYE
[4]  
[Anonymous], 2005, J.Data. Sci, DOI DOI 10.6339/JDS.2005.03(4).238
[5]  
[Anonymous], 1982, STAT PROPERTIES GEN
[6]  
[Anonymous], 1997, Markov chain Monte Carlo: Stochastic Simulation for Bayesian Inference
[7]   On fundamental skew distributions [J].
Arellano-Valle, RB ;
Genton, MG .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 96 (01) :93-116
[8]  
Arellano-Valle RB, 2007, J APPL STAT, V33, P561
[9]   On the unification of families of skew-normal distributions [J].
Arellano-Valle, Reinaldo B. ;
Azzalini, Adelchi .
SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (03) :561-574
[10]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726